Show simple item record

dc.contributor.author
Polek, Anna
dc.contributor.author
Cazorla, Claudio
dc.contributor.author
Kundu, Dipan
dc.date.accessioned
2021-01-13T08:35:07Z
dc.date.available
2021-01-13T06:13:37Z
dc.date.available
2021-01-13T08:35:07Z
dc.date.issued
2020-12-10
dc.identifier.issn
1932-7455
dc.identifier.issn
1932-7447
dc.identifier.other
10.1021/acs.jpcc.0c09783
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/461861
dc.description.abstract
The cost advantage of Na-ion batteries has spurred intensive research effort in the last 10 years to develop reversible Na+ storage materials. Although classic host materials—analogous to those in the Li-ion system—are potentially straightforward targets, sluggish Na+ diffusion in many inorganic structures limits options. In this regard, open framework inorganic–organic hybrids such as metal–organic framework materials are considered as viable alternatives. Herein, we introduce heterometallic formate frameworks as potential candidates for reversible Na+ storage. As a first, we present a microwave solvothermal strategy for rapid synthesis of phase-pure microcrystalline Na2Co(HCO2)4 and AB(HCO2)3 (A: Li/Na; B: Co/Mn). By combining in-depth impedance analysis with ab initio molecular dynamics simulation, we reveal that the Li+/Na+ conduction—which follows a “pinball” mechanism—in these materials is extrinsic defect-dominated. Calculation suggests that a librational motion of the formate anions facilitates the diffusion of Na+ compared to Li+, explaining the origin of anomalously higher ionic conductivity for the Na analogue compared to the Li one. Preliminary electrochemical investigation reveals reversible Na+ storage in Na2Co(HCO2)4 and NaMn(HCO2)3 at an average voltage of 2.5–3 V.
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.title
Nature of Alkali Ion Conduction and Reversible Na-Ion Storage in Hybrid Formate Framework Materials
en_US
dc.type
Journal Article
dc.date.published
2020-12-01
ethz.journal.title
The Journal of Physical Chemistry C
ethz.journal.volume
124
en_US
ethz.journal.issue
49
en_US
ethz.journal.abbreviated
J. Phys. Chem. C
ethz.pages.start
26714
en_US
ethz.pages.end
26721
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03763 - Niederberger, Markus / Niederberger, Markus
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03763 - Niederberger, Markus / Niederberger, Markus
ethz.date.deposited
2021-01-13T06:13:43Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-13T08:35:20Z
ethz.rosetta.lastUpdated
2023-02-06T21:16:08Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Nature%20of%20Alkali%20Ion%20Conduction%20and%20Reversible%20Na-Ion%20Storage%20in%20Hybrid%20Formate%20Framework%20Materials&rft.jtitle=The%20Journal%20of%20Physical%20Chemistry%20C&rft.date=2020-12-10&rft.volume=124&rft.issue=49&rft.spage=26714&rft.epage=26721&rft.issn=1932-7455&1932-7447&rft.au=Polek,%20Anna&Cazorla,%20Claudio&Kundu,%20Dipan&rft.genre=article&rft_id=info:doi/10.1021/acs.jpcc.0c09783&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record