On the IRS compactification of moduli space
dc.contributor.author
Krifka, Yannick
dc.date.accessioned
2021-03-11T07:00:46Z
dc.date.available
2021-01-19T13:48:57Z
dc.date.available
2021-03-11T07:00:46Z
dc.date.issued
2020-02-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/463758
dc.description.abstract
In [Gel15] Gelander described a new compactification of the moduli space of finite area hyperbolic surfaces using invariant random subgroups. The goal of this paper is to relate this compactification to the classical augmented moduli space, also known as the Deligne-Mumford compactification. We define a continuous finite-to-one surjection from the augmented moduli space to the IRS compactification. The cardinalities of this map's fibers admit a uniform upper bound that depends only on the topology of the underlying surface.
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.title
On the IRS compactification of moduli space
en_US
dc.type
Working Paper
ethz.journal.title
arXiv
ethz.pages.start
2002.02279v1
en_US
ethz.size
48 p.
en_US
ethz.identifier.arxiv
2002.02279
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08802 - Iozzi, Alessandra (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08802 - Iozzi, Alessandra (Tit.-Prof.)
en_US
ethz.date.deposited
2021-01-19T13:49:05Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-11T07:01:01Z
ethz.rosetta.lastUpdated
2021-03-11T07:01:01Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20the%20IRS%20compactification%20of%20moduli%20space&rft.jtitle=arXiv&rft.date=2020-02-06&rft.spage=2002.02279v1&rft.au=Krifka,%20Yannick&rft.genre=preprint&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Working Paper [5329]