WoodFisher: Efficient Second-Order Approximation for Neural Network Compression
dc.contributor.author
Singh, Sidak P.
dc.contributor.author
Alistarh, Dan
dc.contributor.editor
Larochelle, Hugo
dc.contributor.editor
Ranzato, Marc'Aurelio
dc.contributor.editor
Hadsell, Raia
dc.contributor.editor
Balcan, Maria F.
dc.contributor.editor
Lin, H.
dc.date.accessioned
2021-07-21T09:15:13Z
dc.date.available
2021-01-21T09:55:18Z
dc.date.available
2021-02-12T13:50:22Z
dc.date.available
2021-03-02T15:32:50Z
dc.date.available
2021-07-21T09:15:13Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7138-2954-6
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/464419
dc.description.abstract
Second-order information, in the form of Hessian- or Inverse-Hessian-vector products, is a fundamental tool for solving optimization problems. Recently, there has been significant interest in utilizing this information in the context of deep neural networks; however, relatively little is known about the quality of existing approximations in this context. Our work considers this question, examines the accuracy of existing approaches, and proposes a method called WoodFisher to compute a faithful and efficient estimate of the inverse Hessian.</p> <p>Our main application is to neural network compression, where we build on the classic Optimal Brain Damage/Surgeon framework. We demonstrate that WoodFisher significantly outperforms popular state-of-the-art methods for one-shot pruning. Further, even when iterative, gradual pruning is allowed, our method results in a gain in test accuracy over the state-of-the-art approaches for popular image classification datasets such as ImageNet ILSVRC. Further, we show how our method can be extended to take into account first-order information, and illustrate its ability to automatically set layer-wise pruning thresholds, or perform compression in the limited-data regime.
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.title
WoodFisher: Efficient Second-Order Approximation for Neural Network Compression
en_US
dc.type
Conference Paper
dc.date.published
2020
ethz.book.title
Advances in Neural Information Processing Systems 33
en_US
ethz.pages.start
18098
en_US
ethz.pages.end
18109
en_US
ethz.event
34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020)
en_US
ethz.event.location
Online
en_US
ethz.event.date
December 6-12, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
en_US
ethz.identifier.url
https://papers.nips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html
ethz.date.deposited
2021-01-21T09:55:25Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-02T15:32:59Z
ethz.rosetta.lastUpdated
2022-03-29T10:34:22Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=WoodFisher:%20Efficient%20Second-Order%20Approximation%20for%20Neural%20Network%20Compression&rft.date=2021&rft.spage=18098&rft.epage=18109&rft.au=Singh,%20Sidak%20P.&Alistarh,%20Dan&rft.isbn=978-1-7138-2954-6&rft.genre=proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2033
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33140]