Show simple item record

dc.contributor.author
Singh, Sidak P.
dc.contributor.author
Alistarh, Dan
dc.contributor.editor
Larochelle, Hugo
dc.contributor.editor
Ranzato, Marc'Aurelio
dc.contributor.editor
Hadsell, Raia
dc.contributor.editor
Balcan, Maria F.
dc.contributor.editor
Lin, H.
dc.date.accessioned
2021-07-21T09:15:13Z
dc.date.available
2021-01-21T09:55:18Z
dc.date.available
2021-02-12T13:50:22Z
dc.date.available
2021-03-02T15:32:50Z
dc.date.available
2021-07-21T09:15:13Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7138-2954-6
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/464419
dc.description.abstract
Second-order information, in the form of Hessian- or Inverse-Hessian-vector products, is a fundamental tool for solving optimization problems. Recently, there has been significant interest in utilizing this information in the context of deep neural networks; however, relatively little is known about the quality of existing approximations in this context. Our work considers this question, examines the accuracy of existing approaches, and proposes a method called WoodFisher to compute a faithful and efficient estimate of the inverse Hessian.</p> <p>Our main application is to neural network compression, where we build on the classic Optimal Brain Damage/Surgeon framework. We demonstrate that WoodFisher significantly outperforms popular state-of-the-art methods for one-shot pruning. Further, even when iterative, gradual pruning is allowed, our method results in a gain in test accuracy over the state-of-the-art approaches for popular image classification datasets such as ImageNet ILSVRC. Further, we show how our method can be extended to take into account first-order information, and illustrate its ability to automatically set layer-wise pruning thresholds, or perform compression in the limited-data regime.
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.title
WoodFisher: Efficient Second-Order Approximation for Neural Network Compression
en_US
dc.type
Conference Paper
dc.date.published
2020
ethz.book.title
Advances in Neural Information Processing Systems 33
en_US
ethz.pages.start
18098
en_US
ethz.pages.end
18109
en_US
ethz.event
34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020)
en_US
ethz.event.location
Online
en_US
ethz.event.date
December 6-12, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
en_US
ethz.identifier.url
https://papers.nips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html
ethz.date.deposited
2021-01-21T09:55:25Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-02T15:32:59Z
ethz.rosetta.lastUpdated
2022-03-29T10:34:22Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.atitle=WoodFisher:%20Efficient%20Second-Order%20Approximation%20for%20Neural%20Network%20Compression&amp;rft.date=2021&amp;rft.spage=18098&amp;rft.epage=18109&amp;rft.au=Singh,%20Sidak%20P.&amp;Alistarh,%20Dan&amp;rft.isbn=978-1-7138-2954-6&amp;rft.genre=proceeding&amp;rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2033
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record