Neural Anisotropy Directions
dc.contributor.author
Ortiz-Jiménez, Guillermo
dc.contributor.author
Modas, Apostolos
dc.contributor.author
Moosavi-Dezfooli, Seyed-Mohsen
dc.contributor.author
Frossard, Pascal
dc.contributor.editor
Larochelle, Hugo
dc.contributor.editor
Ranzato, Marc'Aurelio
dc.contributor.editor
Hadsell, Raia
dc.contributor.editor
Balcan, Maria F.
dc.contributor.editor
Lin, H.
dc.date.accessioned
2021-07-21T09:25:08Z
dc.date.available
2021-01-21T09:58:00Z
dc.date.available
2021-02-12T12:47:54Z
dc.date.available
2021-03-02T15:11:11Z
dc.date.available
2021-07-21T09:25:08Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7138-2954-6
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/464421
dc.description.abstract
In this work, we analyze the role of the network architecture in shaping the inductive bias of deep classifiers. To that end, we start by focusing on a very simple problem, i.e., classifying a class of linearly separable distributions, and show that, depending on the direction of the discriminative feature of the distribution, many state-of-the-art deep convolutional neural networks (CNNs) have a surprisingly hard time solving this simple task. We then define as neural anisotropy directions (NADs) the vectors that encapsulate the directional inductive bias of an architecture. These vectors, which are specific for each architecture and hence act as a signature, encode the preference of a network to separate the input data based on some particular features. We provide an efficient method to identify NADs for several CNN architectures and thus reveal their directional inductive biases. Furthermore, we show that, for the CIFAR-10 dataset, NADs characterize the features used by CNNs to discriminate between different classes
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.title
Neural Anisotropy Directions
en_US
dc.type
Conference Paper
dc.date.published
2020
ethz.book.title
Advances in Neural Information Processing Systems 33
en_US
ethz.pages.start
17896
en_US
ethz.pages.end
17906
en_US
ethz.event
34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020)
en_US
ethz.event.location
Online
en_US
ethz.event.date
December 6-12, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
en_US
ethz.identifier.url
https://papers.nips.cc/paper/2020/hash/cff02a74da64d145a4aed3a577a106ab-Abstract.html
ethz.date.deposited
2021-01-21T09:58:06Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-02T15:11:20Z
ethz.rosetta.lastUpdated
2022-03-29T10:34:30Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Neural%20Anisotropy%20Directions&rft.date=2021&rft.spage=17896&rft.epage=17906&rft.au=Ortiz-Jim%C3%A9nez,%20Guillermo&Modas,%20Apostolos&Moosavi-Dezfooli,%20Seyed-Mohsen&Frossard,%20Pascal&rft.isbn=978-1-7138-2954-6&rft.genre=proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2033
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33508]