Show simple item record

dc.contributor.author
Pattisapu, Varaha K.
dc.contributor.author
Daunhawer, Imant
dc.contributor.author
Weikert, Thomas
dc.contributor.author
Sauter, Alexander
dc.contributor.author
Stieltjes, Bram
dc.contributor.author
Vogt, Julia E.
dc.contributor.editor
Akata, Zeynep
dc.contributor.editor
Geiger, Andreas
dc.contributor.editor
Sattler, Torsten
dc.date.accessioned
2021-04-27T09:46:51Z
dc.date.available
2021-01-21T16:52:00Z
dc.date.available
2021-04-27T09:46:51Z
dc.date.issued
2020
dc.identifier.isbn
978-3-030-71277-8
en_US
dc.identifier.isbn
978-3-030-71278-5
en_US
dc.identifier.issn
0302-9743
dc.identifier.issn
1611-3349
dc.identifier.other
10.1007/978-3-030-71278-5_32
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/464551
dc.description.abstract
PET/CT imaging is the gold standard for the diagnosis and staging of lung cancer. However, especially in healthcare systems with limited resources, costly PET/CT images are often not readily available. Conventional machine learning models either process CT or PET/CT images but not both. Models designed for PET/CT images are hence restricted by the number of PET images, such that they are unable to additionally leverage CT-only data. In this work, we apply the concept of visual soft attention to efficiently learn a model for lung cancer segmentation from only a small fraction of PET/CT scans and a larger pool of CT-only scans. We show that our model is capable of jointly processing PET/CT as well as CT-only images, which performs on par with the respective baselines whether or not PET images are available at test time. We then demonstrate that the model learns efficiently from only a few PET/CT scans in a setting where mostly CT-only data is available, unlike conventional models.
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.title
PET-guided Attention Network for Segmentation of Lung Tumors from PET/CT images
en_US
dc.type
Conference Paper
dc.date.published
2021-03-17
ethz.book.title
Pattern Recognition
en_US
ethz.journal.title
Lecture Notes in Computer Science
ethz.journal.volume
12544
en_US
ethz.journal.abbreviated
LNCS
ethz.pages.start
445
en_US
ethz.pages.end
458
en_US
ethz.event
42nd Annual Symposium of the German Association for Pattern Recognition (DAGM GCPR 2020) (virtual)
en_US
ethz.event.location
Tübingen, Germany
en_US
ethz.event.date
September 28 - October 1, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.grant
Machine Learning Methods for Clinical Data Analysis and Precision Medicine
en_US
ethz.publication.place
Cham
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09670 - Vogt, Julia / Vogt, Julia
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09670 - Vogt, Julia / Vogt, Julia
en_US
ethz.grant.agreementno
188466
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-01-21T16:52:11Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-04-27T09:47:02Z
ethz.rosetta.lastUpdated
2022-03-29T06:46:48Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=PET-guided%20Attention%20Network%20for%20Segmentation%20of%20Lung%20Tumors%20from%20PET/CT%20images&rft.jtitle=Lecture%20Notes%20in%20Computer%20Science&rft.date=2020&rft.volume=12544&rft.spage=445&rft.epage=458&rft.issn=0302-9743&1611-3349&rft.au=Pattisapu,%20Varaha%20K.&Daunhawer,%20Imant&Weikert,%20Thomas&Sauter,%20Alexander&Stieltjes,%20Bram&rft.isbn=978-3-030-71277-8&978-3-030-71278-5&rft.genre=proceeding&rft_id=info:doi/10.1007/978-3-030-71278-5_32&rft.btitle=Pattern%20Recognition
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record