Show simple item record

dc.contributor.author
Ma, Jin
dc.contributor.author
Ahkami, Mehrdad
dc.contributor.author
Saar, Martin O.
dc.contributor.author
Kong, Xiang-Zhao
dc.date.accessioned
2021-01-22T08:03:09Z
dc.date.available
2021-01-22T03:50:32Z
dc.date.available
2021-01-22T08:03:09Z
dc.date.issued
2021-03-05
dc.identifier.issn
0009-2541
dc.identifier.issn
1872-6836
dc.identifier.other
10.1016/j.chemgeo.2020.120042
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/464580
dc.identifier.doi
10.3929/ethz-b-000464580
dc.description.abstract
Accessible surface areas (ASAs) of individual rock-forming minerals exert a fundamental control on the maximum mineral reactivity with formation fluids. Notably, ASA efficiency during fluid-rock reactions can vary by orders of magnitude, depending on the inflow fluid chemistry and the velocity field. Due to the lack of adequate quantification methods, determining the mineral-specific ASAs and their reaction efficiency still remain extremely difficult. Here, we first present a novel joint method that appropriately calculates ASAs of individual minerals in a multi-mineral sandstone. This joint method combines SEM-image processing results and Brunauer-Emmett-Teller (BET) surface area measurements by a Monte-Carlo algorithm to derive scaling factors and ASAs for individual minerals at the resolution of BET measurements. Using these atomic-scale ASAs, we then investigate the impact of flow rate on the ASA efficiency in mineral dissolution reactions during the injection of CO2-enriched brine. This is done by conducting a series of pore-scale reactive transport simulations, using a two-dimensional (2D) scanning electron microscopy (SEM) image of this sandstone. The ASA efficiency is determined employing a domain-averaged dissolution rate and the effective surface area of the most reactive phase in the sandstone (dolomite). As expected, the dolomite reactivity is found to increase with the flow rate, due to the on average high fluid reactivity. The surface efficiency increases slightly with the fluid flow rate, and reaches a relatively stable value of about 1%. The domain averaged method is then compared with the in-out averaged method (i.e the “Black-box” approach), which is often used to analyzed the experimental observations. The in-out averaged method yields a considerable overestimation of the fluid reactivity, a small underestimation of the dolomite reactivity, and a considerable underestimation of the ASA efficiency. The discrepancy between the two methods is becoming smaller when the injection rate increases. Our comparison suggests that the result interpretation of the in-out averaged method should be contemplated, in particular, when the flow rate is small. Nonetheless, our proposed ASA determination method should facilitate accurate calculations of fluid-mineral reactivity in large-scale reactive transport simulations, and we advise that an upscaling of the ASA efficiency needs to be carefully considered, due to the low surface efficiency.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Reactive surface area
en_US
dc.subject
Mineral reactivity
en_US
dc.subject
Pore-scale
en_US
dc.subject
Reactive transport
en_US
dc.title
Quantification of mineral accessible surface area and flow-dependent fluid-mineral reactivity at the pore scale
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-01-11
ethz.journal.title
Chemical Geology
ethz.journal.volume
563
en_US
ethz.journal.abbreviated
Chem. geol.
ethz.pages.start
120042
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Demonstration of soft stimulation treatments of geothermal reservoirs
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erdwissenschaften / Dep. of Earth Sciences::02506 - Institut für Geophysik / Institute of Geophysics::09494 - Saar, Martin O. / Saar, Martin O.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erdwissenschaften / Dep. of Earth Sciences::02506 - Institut für Geophysik / Institute of Geophysics::09494 - Saar, Martin O. / Saar, Martin O.
ethz.grant.agreementno
691728
ethz.grant.fundername
SBFI
ethz.grant.funderDoi
10.13039/501100007352
ethz.grant.program
H2020
ethz.date.deposited
2021-01-22T03:50:45Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-01-22T08:03:18Z
ethz.rosetta.lastUpdated
2022-03-29T04:55:20Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantification%20of%20mineral%20accessible%20surface%20area%20and%20flow-dependent%20fluid-mineral%20reactivity%20at%20the%20pore%20scale&rft.jtitle=Chemical%20Geology&rft.date=2021-03-05&rft.volume=563&rft.spage=120042&rft.issn=0009-2541&1872-6836&rft.au=Ma,%20Jin&Ahkami,%20Mehrdad&Saar,%20Martin%20O.&Kong,%20Xiang-Zhao&rft.genre=article&rft_id=info:doi/10.1016/j.chemgeo.2020.120042&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record