Show simple item record

dc.contributor.author
Liao, Zhengwen
dc.contributor.author
Li, Haiying
dc.contributor.author
Miao, Jianrui
dc.contributor.author
Corman, Francesco
dc.date.accessioned
2021-01-25T08:51:43Z
dc.date.available
2021-01-24T03:51:43Z
dc.date.available
2021-01-25T08:51:43Z
dc.date.issued
2021-03
dc.identifier.issn
0968-090X
dc.identifier.other
10.1016/j.trc.2020.102961
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/465053
dc.description.abstract
Railway capacity is a vague concept, related to the possibility to run a maximal transport performance given a set of available resources. While most approaches focus only on infrastructure resources (i.e. availability of train paths), we include both infrastructure and vehicle resources in a capacity estimation problem. We study the railway capacity estimation problem applying an associated timetable saturation method; in other words, the capacity is related to a timetable where no additional trains can be added. We use optimization methods to find such a timetable integrating explicitly variables and constraints from vehicle circulation. A hybrid time–space network describes the integrated timetabling and vehicles scheduling problem, based on which an integer programming model can be formulated, to maximize the overall transportation performance. A Lagrangian relaxation-based decomposition algorithm is proposed to solve the problem, and is shown able to scale to large instances efficiently. The integrated scheduling problem is decomposed into a timetabling sub-problem and a vehicle circulation sub-problem by dualizing the consistency constraints linking the two. A new heuristic, based on the concept of timetable intensity, is employed to improve the quality of the feasible (non-relaxed) solution found. The experimental result shows the benefit of the approach, which can evaluate transportation performance and relate it to various fleet sizes, vehicle depot locations, and minimum headways.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier Science
en_US
dc.subject
Railway capacity
en_US
dc.subject
Timetable
en_US
dc.subject
Vehicle circulation
en_US
dc.subject
Integrated optimization
en_US
dc.subject
Time-space network
en_US
dc.subject
Lagrangian relaxation
en_US
dc.title
Railway capacity estimation considering vehicle circulation
en_US
dc.type
Journal Article
dc.date.published
2021-01-16
ethz.title.subtitle
Integrated timetable and vehicles scheduling on hybrid time-space networks
en_US
ethz.journal.title
Transportation Research Part C: Emerging Technologies
ethz.journal.volume
124
en_US
ethz.journal.abbreviated
Transp. res., Part C Emerg. technol.
ethz.pages.start
102961
en_US
ethz.size
33 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::09611 - Corman, Francesco / Corman, Francesco
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt und Landschaft D-ARCH
*
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::09611 - Corman, Francesco / Corman, Francesco
ethz.date.deposited
2021-01-24T03:51:50Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-25T08:51:52Z
ethz.rosetta.lastUpdated
2021-01-25T08:51:52Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Railway%20capacity%20estimation%20considering%20vehicle%20circulation&rft.jtitle=Transportation%20Research%20Part%20C:%20Emerging%20Technologies&rft.date=2021-03&rft.volume=124&rft.spage=102961&rft.issn=0968-090X&rft.au=Liao,%20Zhengwen&Li,%20Haiying&Miao,%20Jianrui&Corman,%20Francesco&rft.genre=article&rft_id=info:doi/10.1016/j.trc.2020.102961&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record