Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
dc.contributor.author
Hu, Yifan
dc.contributor.author
Zhang, Siqi
dc.contributor.author
Chen, Xin
dc.contributor.author
He, Niao
dc.contributor.editor
Larochelle, Hugo
dc.contributor.editor
Ranzato, Marc'Aurelio
dc.contributor.editor
Hadsell, Raia
dc.contributor.editor
Balcan, Maria F.
dc.contributor.editor
Lin, H.
dc.date.accessioned
2021-07-21T07:35:47Z
dc.date.available
2021-01-25T07:56:19Z
dc.date.available
2021-03-04T14:32:28Z
dc.date.available
2021-07-21T07:35:47Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7138-2954-6
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/465092
dc.description.abstract
Conditional stochastic optimization covers a variety of applications ranging from invariant learning and causal inference to meta-learning. However, constructing unbiased gradient estimators for such problems is challenging due to the composition structure. As an alternative, we propose a biased stochastic gradient descent (BSGD) algorithm and study the bias-variance tradeoff under different structural assumptions. We establish the sample complexities of BSGD for strongly convex, convex, and weakly convex objectives under smooth and non-smooth conditions. Our lower bound analysis shows that the sample complexities of BSGD cannot be improved for general convex objectives and nonconvex objectives except for smooth nonconvex objectives with Lipschitz continuous gradient estimator. For this special setting, we propose an accelerated algorithm called biased SpiderBoost (BSpiderBoost) that matches the lower bound complexity. We further conduct numerical experiments on invariant logistic regression and model-agnostic meta-learning to illustrate the performance of BSGD and BSpiderBoost.
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.title
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
en_US
dc.type
Conference Paper
dc.date.published
2020
ethz.book.title
Advances in Neural Information Processing Systems 33
en_US
ethz.pages.start
2759
en_US
ethz.pages.end
2770
en_US
ethz.event
34th Annual Conference on Neural Information Processing Systems (NeurIPS 2020)
en_US
ethz.event.location
Online
en_US
ethz.event.date
December 6-12, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09729 - He, Niao / He, Niao
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09729 - He, Niao / He, Niao
en_US
ethz.identifier.url
https://papers.nips.cc/paper/2020/hash/1cdf14d1e3699d61d237cf76ce1c2dca-Abstract.html
ethz.date.deposited
2021-01-25T07:56:26Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-04T14:32:51Z
ethz.rosetta.lastUpdated
2022-03-29T10:33:35Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Biased%20Stochastic%20First-Order%20Methods%20for%20Conditional%20Stochastic%20Optimization%20and%20Applications%20in%20Meta%20Learning&rft.date=2021&rft.spage=2759&rft.epage=2770&rft.au=Hu,%20Yifan&Zhang,%20Siqi&Chen,%20Xin&He,%20Niao&rft.isbn=978-1-7138-2954-6&rft.genre=proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2033
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Conference Paper [33470]