A Technique for Obtaining True Approximations for k-Center with Covering Constraints
Metadata only
Date
2020Type
- Conference Paper
ETH Bibliography
yes
Altmetrics
Abstract
There has been a recent surge of interest in incorporating fairness aspects into classical clustering problems. Two recently introduced variants of the k-Center problem in this spirit are Colorful k-Center, introduced by Bandyapadhyay, Inamdar, Pai, and Varadarajan, and lottery models, such as the Fair Robust k-Center problem introduced by Harris, Pensyl, Srinivasan, and Trinh. To address fairness aspects, these models, compared to traditional k-Center, include additional covering constraints. Prior approximation results for these models require to relax some of the normally hard constraints, like the number of centers to be opened or the involved covering constraints, and therefore, only obtain constant-factor pseudo-approximations. In this paper, we introduce a new approach to deal with such covering constraints that leads to (true) approximations, including a 4-approximation for Colorful k-Center with constantly many colors—settling an open question raised by Bandyapadhyay, Inamdar, Pai, and Varadarajan—and a 4-approximation for Fair Robust k-Center, for which the existence of a (true) constant-factor approximation was also open.
We complement our results by showing that if one allows an unbounded number of colors, then Colorful k-Center admits no approximation algorithm with finite approximation guarantee, assuming that P≠NP. Moreover, under the Exponential Time Hypothesis, the problem is inapproximable if the number of colors grows faster than logarithmic in the size of the ground set. Show more
Publication status
publishedExternal links
Book title
Integer Programming and Combinatorial OptimizationJournal / series
Lecture Notes in Computer ScienceVolume
Pages / Article No.
Publisher
SpringerEvent
Organisational unit
09487 - Zenklusen, Rico / Zenklusen, Rico
Funding
184622 - Toward Stronger Approximation Algorithms for Fundamental Network Design and Optimization Problems (SNF)
817750 - Fundamental Problems at the Interface of Combinatorial Optimization with Integer Programming and Online Optimization (EC)
174117 - Theory and Applications of Linear and Semidefinite Relaxations for Combinatorial Optimization Problems (SNF)
Notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.More
Show all metadata
ETH Bibliography
yes
Altmetrics