Show simple item record

dc.contributor.author
Ahmed, Daniel
dc.contributor.author
Sukhov, Alexander
dc.contributor.author
Hauri, David
dc.contributor.author
Rodrigue, Dubon
dc.contributor.author
Maranta, Gian
dc.contributor.author
Harting, Jens
dc.contributor.author
Nelson, Bradley
dc.date.accessioned
2021-03-05T14:07:52Z
dc.date.available
2021-01-27T06:16:41Z
dc.date.available
2021-01-27T17:20:18Z
dc.date.available
2021-03-05T14:07:52Z
dc.date.issued
2021-02
dc.identifier.issn
2522-5839
dc.identifier.other
10.1038/s42256-020-00275-x
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/465805
dc.description.abstract
The ability to propel against flows, that is, to perform positive rheotaxis, can provide exciting opportunities for applications in targeted therapeutics and non-invasive surgery. So far no biocompatible technologies exist for navigating microparticles upstream when they are in a background fluid flow. Inspired by many naturally occurring microswimmers—such as bacteria, spermatozoa and plankton—that utilize the no-slip boundary conditions of the wall to exhibit upstream propulsion, here we report on the design and characterization of self-assembled microswarms that can execute upstream motility in a combination of external acoustic and magnetic fields. Both acoustic and magnetic fields are safe to humans, non-invasive, can penetrate deeply into the human body and are well-developed in clinical settings. The combination of both fields can overcome the limitations encountered by single actuation methods. The design criteria of the acoustically induced reaction force of the microswarms, which is needed to perform rolling-type motion, are discussed. We show quantitative agreement between experimental data and our model that captures the rolling behaviour. The upstream capability provides a design strategy for delivering small drug molecules to hard-to-reach sites and represents a fundamental step towards the realization of micro- and nanosystem navigation against the blood flow.
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.subject
Design, synthesis and processing
en_US
dc.subject
Drug delivery
en_US
dc.title
Bioinspired acousto-magnetic microswarm robots with upstream motility
en_US
dc.type
Journal Article
dc.date.published
2021-01-11
ethz.journal.title
Nature Machine Intelligence
ethz.journal.volume
3
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Nat Mach Intell
ethz.pages.start
116
en_US
ethz.pages.end
124
en_US
ethz.grant
Acousto-Magnetic Micro/Nanorobots for Biomedical Applications
en_US
ethz.grant
Soft Micro Robotics
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09700 - Ahmed, Daniel / Ahmed, Daniel
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03627 - Nelson, Bradley J. / Nelson, Bradley J.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09700 - Ahmed, Daniel / Ahmed, Daniel
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03627 - Nelson, Bradley J. / Nelson, Bradley J.
ethz.grant.agreementno
853309
ethz.grant.agreementno
743217
ethz.grant.agreementno
853309
ethz.grant.agreementno
743217
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.relation.isNewVersionOf
20.500.11850/464520
ethz.date.deposited
2021-01-27T06:16:45Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-05T14:08:04Z
ethz.rosetta.lastUpdated
2024-02-02T13:14:48Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Bioinspired%20acousto-magnetic%20microswarm%20robots%20with%20upstream%20motility&rft.jtitle=Nature%20Machine%20Intelligence&rft.date=2021-02&rft.volume=3&rft.issue=2&rft.spage=116&rft.epage=124&rft.issn=2522-5839&rft.au=Ahmed,%20Daniel&Sukhov,%20Alexander&Hauri,%20David&Rodrigue,%20Dubon&Maranta,%20Gian&rft.genre=article&rft_id=info:doi/10.1038/s42256-020-00275-x&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record