Learning to Dress 3D People in Generative Clothing
dc.contributor.author
Ma, Qianli
dc.contributor.author
Yang, Jinglong
dc.contributor.author
Ranjan, Anurag
dc.contributor.author
Pujades, Sergi
dc.contributor.author
Pons-Moll, Gerard
dc.contributor.author
Tang, Siyu
dc.contributor.author
Black, Michael J.
dc.date.accessioned
2021-02-01T15:08:52Z
dc.date.available
2021-01-31T09:48:41Z
dc.date.available
2021-02-01T15:08:52Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7281-7168-5
en_US
dc.identifier.isbn
978-1-7281-7169-2
en_US
dc.identifier.other
10.1109/CVPR42600.2020.00650
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/466890
dc.identifier.doi
10.3929/ethz-b-000466890
dc.description.abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses. The model, code and data are available for research purposes at this website.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Learning to Dress 3D People in Generative Clothing
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2020-08-05
ethz.book.title
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
en_US
ethz.pages.start
6468
en_US
ethz.pages.end
6477
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020) (virtual)
en_US
ethz.event.location
Seattle, WA, USA
en_US
ethz.event.date
June 13-19, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::09686 - Tang, Siyu / Tang, Siyu
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::09686 - Tang, Siyu / Tang, Siyu
en_US
ethz.date.deposited
2021-01-31T09:48:54Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-02-01T15:09:01Z
ethz.rosetta.lastUpdated
2022-03-29T05:02:13Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learning%20to%20Dress%203D%20People%20in%20Generative%20Clothing&rft.date=2020&rft.spage=6468&rft.epage=6477&rft.au=Ma,%20Qianli&Yang,%20Jinglong&Ranjan,%20Anurag&Pujades,%20Sergi&Pons-Moll,%20Gerard&rft.isbn=978-1-7281-7168-5&978-1-7281-7169-2&rft.genre=proceeding&rft_id=info:doi/10.1109/CVPR42600.2020.00650&rft.btitle=2020%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)
Files in this item
Publication type
-
Conference Paper [35255]