A fully-distributed proximal-point algorithm for Nash equilibrium seeking with linear convergence rate
Metadata only
Datum
2021Typ
- Conference Paper
Abstract
We address the Nash equilibrium problem in a partial-decision information scenario, where each agent can only observe the actions of some neighbors, while its cost possibly depends on the strategies of other agents. Our main contribution is the design of a fully-distributed, single-layer, fixed-step algorithm, based on a proximal best-response augmented with consensus terms. To derive our algorithm, we follow an operator-theoretic approach. First, we recast the Nash equilibrium problem as that of finding a zero of a monotone operator. Then, we demonstrate that the resulting inclusion can be solved in a fully-distributed way via a proximal-point method, thanks to the use of a novel preconditioning matrix. Under strong monotonicity and Lipschitz continuity of the game mapping, we prove linear convergence of our algorithm to a Nash equilibrium. Furthermore, we show that our method outperforms the fastest known gradient-based schemes, both in terms of guaranteed convergence rate, via theoretical analysis, and in practice, via numerical simulations. © 2020 IEEE. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Buchtitel
2020 59th IEEE Conference on Decision and Control (CDC)Seiten / Artikelnummer
Verlag
IEEEKonferenz
Anmerkungen
Due to the Coronavirus (COVID-19) the conference was conducted virtually.