Show simple item record

dc.contributor.author
Kittner, Noah
dc.contributor.author
Schmidt, Oliver
dc.contributor.author
Staffell, Iain
dc.contributor.author
Kammen, Daniel M.
dc.contributor.editor
Junginger, Martin
dc.contributor.editor
Louwen, Atse
dc.date.accessioned
2021-02-24T17:24:36Z
dc.date.available
2021-02-05T04:07:56Z
dc.date.available
2021-02-24T17:24:36Z
dc.date.issued
2020
dc.identifier.isbn
978-0-12-818763-0
en_US
dc.identifier.isbn
978-0-12-818762-3
en_US
dc.identifier.other
10.1016/B978-0-12-818762-3.00008-X
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/467891
dc.description.abstract
Grid-scale storage technologies have emerged as critical components of a decarbonized power system. Recent developments in emerging technologies, ranging from mechanical energy storage to electrochemical batteries and thermal storage, play an important role for the deployment of low-carbon electricity options, such as solar photovoltaic and wind electricity. This chapter details the types of technological learning models to evaluate the experience rates (ERs) for key grid-scale storage technologies, including lithium-ion and lead-acid batteries, pumped hydro storage, and electrolysis and fuel cells. It updates the state of the literature to determine learning rates of these and other grid-scale storage technologies. We discuss methodological issues in determining ERs for grid-scale storage systems, which often provide multiple applications and services on the grid. In addition, the chapter highlights future outlooks and new areas for research, including topics related to learning-by-doing, learning-by-searching, and manufacturing localization to derive further insights. Rapid cost reductions in lithium-ion batteries have the potential to disrupt electricity and transportation sectors, creating further complementarities and innovation cycles. More rigorous data collection for grid-scale storage systems on cost indicators that incorporate multiple services and applications provided by storage, life cycle greenhouse gas emissions from storage options, and materials availability of emerging battery chemistries could inform better policies to enable low-carbon power systems.
en_US
dc.language.iso
en
en_US
dc.publisher
Academic Press
en_US
dc.subject
Electricity storage
en_US
dc.subject
batteries
en_US
dc.subject
pumped hydro storage
en_US
dc.subject
electrolysis–fuel cells
en_US
dc.subject
grid-scale storage
en_US
dc.title
Grid-scale energy storage
en_US
dc.type
Book Chapter
dc.date.published
2019-11-22
ethz.book.title
Technological Learning in the Transition to a Low-Carbon Energy System. Conceptual Issues, Empirical Findings, and Use in Energy Modeling
en_US
ethz.pages.start
119
en_US
ethz.pages.end
143
en_US
ethz.identifier.wos
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.relation.isPartOf
https://doi.org/10.1016/C2018-0-04547-8
ethz.date.deposited
2021-02-05T04:08:06Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-02-24T17:25:18Z
ethz.rosetta.lastUpdated
2022-03-29T05:26:34Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Grid-scale%20energy%20storage&rft.date=2020&rft.spage=119&rft.epage=143&rft.au=Kittner,%20Noah&Schmidt,%20Oliver&Staffell,%20Iain&Kammen,%20Daniel%20M.&rft.isbn=978-0-12-818763-0&978-0-12-818762-3&rft.genre=bookitem&rft_id=info:doi/10.1016/B978-0-12-818762-3.00008-X&rft.btitle=Technological%20Learning%20in%20the%20Transition%20to%20a%20Low-Carbon%20Energy%20System.%20Conceptual%20Issues,%20Empirical%20Findings,%20and%20Use%20in%20Energy%20Mode
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record