Zur Kurzanzeige

dc.contributor.author
Hosseini, Seyed A.
dc.contributor.author
Safari, Hesameddin
dc.contributor.author
Thevenin, Dominique
dc.date.accessioned
2021-02-05T11:51:31Z
dc.date.available
2021-02-05T04:21:52Z
dc.date.available
2021-02-05T11:51:31Z
dc.date.issued
2021-02
dc.identifier.issn
1099-4300
dc.identifier.other
10.3390/e23020166
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/467920
dc.identifier.doi
10.3929/ethz-b-000467920
dc.description.abstract
The lattice Boltzmann method, now widely used for a variety of applications, has also been extended to model multiphase flows through different formulations. While already applied to many different configurations in low Weber and Reynolds number regimes, applications to higher Weber/Reynolds numbers or larger density/viscosity ratios are still the topic of active research. In this study, through a combination of a decoupled phase-field formulation—the conservative Allen–Cahn equation—and a cumulant-based collision operator for a low-Mach pressure-based flow solver, we present an algorithm that can be used for higher Reynolds/Weber numbers. The algorithm was validated through a variety of test cases, starting with the Rayleigh–Taylor instability in both 2D and 3D, followed by the impact of a droplet on a liquid sheet. In all simulations, the solver correctly captured the flow dynamics andmatched reference results very well. As the final test case, the solver was used to model droplet splashing on a thin liquid sheet in 3D with a density ratio of 1000 and kinematic viscosity ratio of 15, matching the water/air system at We = 8000 and Re = 1000. Results showed that the solver correctly captured the fingering instabilities at the crown rim and their subsequent breakup, in agreement with experimental and numerical observations reported in the literature.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
lattice Boltzmann method
en_US
dc.subject
multiphase flows
en_US
dc.subject
conservative Allen–Cahn
en_US
dc.subject
phase field
en_US
dc.title
Lattice boltzmann solver for multiphase flows: Application to high weber and reynolds numbers
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-01-29
ethz.journal.title
Entropy
ethz.journal.volume
23
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Entropy
ethz.pages.start
166
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-02-05T04:21:57Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-02-05T11:51:42Z
ethz.rosetta.lastUpdated
2022-03-29T05:06:05Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Lattice%20boltzmann%20solver%20for%20multiphase%20flows:%20Application%20to%20high%20weber%20and%20reynolds%20numbers&rft.jtitle=Entropy&rft.date=2021-02&rft.volume=23&rft.issue=2&rft.spage=166&rft.issn=1099-4300&rft.au=Hosseini,%20Seyed%20A.&Safari,%20Hesameddin&Thevenin,%20Dominique&rft.genre=article&rft_id=info:doi/10.3390/e23020166&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige