Show simple item record

dc.contributor.author
Lienhard, Stefan
dc.contributor.author
Malcolm, James G.
dc.contributor.author
Westin, Carl-Frederik
dc.contributor.author
Rathi, Yogesh
dc.date.accessioned
2019-10-02T10:32:37Z
dc.date.available
2017-06-09T19:53:53Z
dc.date.available
2019-10-02T10:32:37Z
dc.date.issued
2011
dc.identifier.issn
1687-6172
dc.identifier.issn
1687-6180
dc.identifier.other
10.1186/1687-6180-2011-77
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/47029
dc.identifier.doi
10.3929/ethz-b-000047029
dc.description.abstract
We describe a technique that uses tractography to visualize neural pathways in human brains by extending an existing framework that uses overlapping Gaussian tensors to model the signal. At each point on the fiber, an unscented Kalman filter is used to find the most consistent direction as a mixture of previous estimates and of the local model. In our previous framework, the diffusion ellipsoid had a cylindrical shape, i.e., the diffusion tensor's second and third eigenvalues were identical. In this paper, we extend the tensor representation so that the diffusion tensor is represented by an arbitrary ellipsoid. Experiments on synthetic data show a reduction in the angular error at fiber crossings and branchings. Tests on in vivo data demonstrate the ability to trace fibers in areas containing crossings or branchings, and the tests also confirm the superiority of using a full tensor representation over the simplified model.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/2.0/
dc.title
A full bi-tensor neural tractography algorithm using the unscented Kalman filter
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 2.0 Generic
dc.date.published
2011-09-27
ethz.journal.title
EURASIP Journal on Advances in Signal Processing
ethz.journal.volume
2011
en_US
ethz.journal.abbreviated
EURASIP J. Adv. Signal Process.
ethz.pages.start
77
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.nebis
006582316
ethz.publication.status
published
en_US
ethz.date.deposited
2017-06-09T19:54:48Z
ethz.source
ECIT
ethz.identifier.importid
imp59364f0ae709243368
ethz.ecitpid
pub:77341
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T08:11:38Z
ethz.rosetta.lastUpdated
2019-10-02T10:32:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20full%20bi-tensor%20neural%20tractography%20algorithm%20using%20the%20unscented%20Kalman%20filter&rft.jtitle=EURASIP%20Journal%20on%20Advances%20in%20Signal%20Processing&rft.date=2011&rft.volume=2011&rft.spage=77&rft.issn=1687-6172&1687-6180&rft.au=Lienhard,%20Stefan&Malcolm,%20James%20G.&Westin,%20Carl-Frederik&Rathi,%20Yogesh&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record