Show simple item record

dc.contributor.author
Mule, Aniket S.
dc.contributor.author
Mazzotti, Sergio
dc.contributor.author
Rossinelli, Aurelio A.
dc.contributor.author
Aellen, Marianne
dc.contributor.author
Prins, P. Tim
dc.contributor.author
van der Bok, Johanna C.
dc.contributor.author
Solari, Simon F.
dc.contributor.author
Glauser, Yannik M.
dc.contributor.author
Kumar, Priyank V.
dc.contributor.author
Riedinger, Andreas
dc.contributor.author
Norris, David J.
dc.date.accessioned
2021-03-03T15:56:35Z
dc.date.available
2021-03-03T08:33:36Z
dc.date.available
2021-03-03T15:56:35Z
dc.date.issued
2021-02-03
dc.identifier.issn
0002-7863
dc.identifier.issn
1520-5126
dc.identifier.other
10.1021/jacs.0c12185
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/472642
dc.description.abstract
Magic-sized clusters (MSCs) of semiconductor are typically defined as specific molecular-scale arrangements of atoms that exhibit enhanced stability. They often grow in discrete jumps, creating a series of crystallites, without the appearance of intermediate sizes. However, despite their long history, the mechanism behind their special stability and growth remains poorly understood. It is particularly difficult to explain experiments that have shown discrete evolution of MSCs to larger sizes well beyond the “cluster” regime and into the size range of colloidal quantum dots. Here, we study the growth of MSCs, including these larger magic-sized CdSe nanocrystals, to unravel the underlying growth mechanism. We first introduce a synthetic protocol that yields a series of nine magic-sized nanocrystals of increasing size. By investigating these crystallites, we obtain important clues about the mechanism. We then develop a microscopic model that uses classical nucleation theory to determine kinetic barriers and simulate the growth. We show that magic-sized nanocrystals are consistent with a series of zinc-blende crystallites that grow layer by layer under surface-reaction-limited conditions. They have a tetrahedral shape, which is preserved when a monolayer is added to any of its four identical facets, leading to a series of discrete nanocrystals with special stability. Our analysis also identifies strong similarities with the growth of semiconductor nanoplatelets, which we then exploit to further increase the size range of our magic-sized nanocrystals. Although we focus here on CdSe, these results reveal a fundamental growth mechanism that can provide a different approach to nearly monodisperse nanocrystals. © 2021 American Chemical Society
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.title
Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals
en_US
dc.type
Journal Article
dc.date.published
2021-01-20
ethz.journal.title
Journal of the American Chemical Society
ethz.journal.volume
143
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
J. Am. Chem. Soc.
ethz.pages.start
2037
en_US
ethz.pages.end
2048
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03875 - Norris, David J. / Norris, David J.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03875 - Norris, David J. / Norris, David J.
ethz.date.deposited
2021-03-03T08:33:56Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-03T15:56:46Z
ethz.rosetta.lastUpdated
2022-03-29T05:36:12Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Unraveling%20the%20Growth%20Mechanism%20of%20Magic-Sized%20Semiconductor%20Nanocrystals&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.date=2021-02-03&rft.volume=143&rft.issue=4&rft.spage=2037&rft.epage=2048&rft.issn=0002-7863&1520-5126&rft.au=Mule,%20Aniket%20S.&Mazzotti,%20Sergio&Rossinelli,%20Aurelio%20A.&Aellen,%20Marianne&Prins,%20P.%20Tim&rft.genre=article&rft_id=info:doi/10.1021/jacs.0c12185&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record