Representation of integers by sparse binary forms
dc.contributor.author
Akhtari, Shabnam
dc.contributor.author
Bengoechea, Paloma
dc.date.accessioned
2021-03-10T12:14:33Z
dc.date.available
2021-03-08T16:50:45Z
dc.date.available
2021-03-10T12:14:33Z
dc.date.issued
2021
dc.identifier.issn
1088-6850
dc.identifier.issn
0002-9947
dc.identifier.other
10.1090/tran/8241
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/473484
dc.description.abstract
We will give new upper bounds for the number of solutions to the inequalities of the shape |F(x, y)| ≤ h, where F(x, y) is a sparse binary form, with integer coefficients, and h is a sufficiently small integer in terms of the discriminant of the binary form F. Our bounds depend on the number of non-vanishing coefficients of F(x, y). When F is "really sparse", we establish a sharp upper bound for the number of solutions that is linear in terms of the number of non-vanishing coefficients. This work will provide affirmative answers to a number of conjectures posed by Mueller and Schmidt in [Trans. Amer. Math. Soc. 303 (1987), pp. 241-255], [Acta Math. 160 (1988), pp. 207-247], in special but important cases. © 2020 American Mathematical Society
en_US
dc.language.iso
en
en_US
dc.publisher
American Mathematical Society
en_US
dc.title
Representation of integers by sparse binary forms
en_US
dc.type
Journal Article
dc.date.published
2020-12-18
ethz.journal.title
Transactions of the American Mathematical Society
ethz.journal.volume
374
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Trans. Amer. Math. Soc.
ethz.pages.start
1687
en_US
ethz.pages.end
1709
en_US
ethz.grant
Modular Forms and Diophantine Approximation
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Providence
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08799 - Imamoglu, Oezlem (Tit.-Prof.)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08799 - Imamoglu, Oezlem (Tit.-Prof.)
ethz.grant.agreementno
173976
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Ambizione
ethz.date.deposited
2021-03-08T16:50:50Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-10T12:14:46Z
ethz.rosetta.lastUpdated
2022-03-29T05:41:36Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Representation%20of%20integers%20by%20sparse%20binary%20forms&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.date=2021&rft.volume=374&rft.issue=3&rft.spage=1687&rft.epage=1709&rft.issn=1088-6850&0002-9947&rft.au=Akhtari,%20Shabnam&Bengoechea,%20Paloma&rft.genre=article&rft_id=info:doi/10.1090/tran/8241&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [121839]