Open access
Datum
2021-02Typ
- Journal Article
Abstract
We propose and study the framework of dissipative statistical solutions for the incompressible Euler equations. Statistical solutions are time-parameterized probability measures on the space of square-integrable functions, whose time-evolution is determined from the underlying Euler equations. We prove partial well-posedness results for dissipative statistical solutions and propose a Monte Carlo type algorithm, based on spectral viscosity spatial discretizations, to approximate them. Under verifiable hypotheses on the computations, we prove that the approximations converge to a statistical solution in a suitable topology. In particular, multi-point statistical quantities of interest converge on increasing resolution. We present several numerical experiments to illustrate the theory. Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-b-000473605Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
Mathematical Models and Methods in Applied SciencesBand
Seiten / Artikelnummer
Verlag
World ScientificThema
Statistical solutions; Incompressible Euler; Monte Carlo; Structure functions; Energy spectraOrganisationseinheit
03851 - Mishra, Siddhartha / Mishra, Siddhartha
Förderung
770880 - Computation and analysis of statistical solutions of fluid flow (EC)
Zugehörige Publikationen und Daten
Is new version of: http://hdl.handle.net/20.500.11850/364379