Statistical solutions of the incompressible Euler equations
dc.contributor.author
Lanthaler, Samuel
dc.contributor.author
Mishra, Siddhartha
dc.contributor.author
Parés-Pulido, Carlos
dc.date.accessioned
2021-03-15T10:52:19Z
dc.date.available
2021-03-09T11:11:37Z
dc.date.available
2021-03-15T10:52:19Z
dc.date.issued
2021-02
dc.identifier.issn
0218-2025
dc.identifier.issn
1793-6314
dc.identifier.other
10.1142/s0218202521500068
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/473605
dc.identifier.doi
10.3929/ethz-b-000473605
dc.description.abstract
We propose and study the framework of dissipative statistical solutions for the incompressible Euler equations. Statistical solutions are time-parameterized probability measures on the space of square-integrable functions, whose time-evolution is determined from the underlying Euler equations. We prove partial well-posedness results for dissipative statistical solutions and propose a Monte Carlo type algorithm, based on spectral viscosity spatial discretizations, to approximate them. Under verifiable hypotheses on the computations, we prove that the approximations converge to a statistical solution in a suitable topology. In particular, multi-point statistical quantities of interest converge on increasing resolution. We present several numerical experiments to illustrate the theory.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
World Scientific
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Statistical solutions
en_US
dc.subject
Incompressible Euler
en_US
dc.subject
Monte Carlo
en_US
dc.subject
Structure functions
en_US
dc.subject
Energy spectra
en_US
dc.title
Statistical solutions of the incompressible Euler equations
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-02-16
ethz.journal.title
Mathematical Models and Methods in Applied Sciences
ethz.journal.volume
31
en_US
ethz.journal.issue
02
en_US
ethz.journal.abbreviated
Math. Models Methods Appl. Sci.
ethz.pages.start
223
en_US
ethz.pages.end
292
en_US
ethz.size
70 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Computation and analysis of statistical solutions of fluid flow
en_US
ethz.identifier.scopus
ethz.publication.place
Singapore
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.grant.agreementno
770880
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.relation.isNewVersionOf
20.500.11850/364379
ethz.date.deposited
2021-03-09T11:11:50Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-03-15T10:52:32Z
ethz.rosetta.lastUpdated
2024-02-02T13:18:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Statistical%20solutions%20of%20the%20incompressible%20Euler%20equations&rft.jtitle=Mathematical%20Models%20and%20Methods%20in%20Applied%20Sciences&rft.date=2021-02&rft.volume=31&rft.issue=02&rft.spage=223&rft.epage=292&rft.issn=0218-2025&1793-6314&rft.au=Lanthaler,%20Samuel&Mishra,%20Siddhartha&Par%C3%A9s-Pulido,%20Carlos&rft.genre=article&rft_id=info:doi/10.1142/s0218202521500068&
Files in this item
Publication type
-
Journal Article [132092]