Show simple item record

dc.contributor.author
Liu, Lucia
dc.contributor.author
Dugas, Daniel
dc.contributor.author
Cesari, Gianluca
dc.contributor.author
Siegwart, Roland
dc.contributor.author
Dubé, Renaud
dc.date.accessioned
2021-04-28T15:25:31Z
dc.date.available
2021-03-19T04:04:47Z
dc.date.available
2021-04-28T15:25:31Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7281-6212-6
en_US
dc.identifier.isbn
978-1-7281-6213-3
en_US
dc.identifier.other
10.1109/IROS45743.2020.9341540
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/475385
dc.description.abstract
Mobile robots operating in public environments require the ability to navigate among humans and other obstacles in a socially compliant and safe manner. This work presents a combined imitation learning and deep reinforcement learning approach for motion planning in such crowded and cluttered environments. By separately processing information related to static and dynamic objects, we enable our network to learn motion patterns that are tailored to real-world environments. Our model is also designed such that it can handle usual cases in which robots can be equipped with sensor suites that only offer limited field of view. Our model outperforms current state-of-the-art approaches, which is shown in simulated environments containing human-like agents and static obstacles. Additionally, we demonstrate the real-time performance and applicability of our model by successfully navigating a robotic platform through real-world environments. © 2020 IEEE.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Robot Navigation in Crowded Environments Using Deep Reinforcement Learning
en_US
dc.type
Conference Paper
dc.date.published
2021-02-10
ethz.book.title
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
en_US
ethz.pages.start
5671
en_US
ethz.pages.end
5677
en_US
ethz.event
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2020) (virtual)
en_US
ethz.event.location
Las Vegas, NV, USA
en_US
ethz.event.date
October 24, 2020 - January 24, 2021
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-03-19T04:05:14Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-04-28T15:25:41Z
ethz.rosetta.lastUpdated
2021-04-28T15:25:41Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Robot%20Navigation%20in%20Crowded%20Environments%20Using%20Deep%20Reinforcement%20Learning&rft.date=2020&rft.spage=5671&rft.epage=5677&rft.au=Liu,%20Lucia&Dugas,%20Daniel&Cesari,%20Gianluca&Siegwart,%20Roland&Dub%C3%A9,%20Renaud&rft.isbn=978-1-7281-6212-6&978-1-7281-6213-3&rft.genre=proceeding&rft_id=info:doi/10.1109/IROS45743.2020.9341540&rft.btitle=2020%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record