Show simple item record

dc.contributor.author
Hsiao, Jeff C.
dc.contributor.author
Buryska, Tomas
dc.contributor.author
Kim, Eunjung
dc.contributor.author
Howes, Philip D.
dc.contributor.author
deMello, Andrew J.
dc.date.accessioned
2021-03-24T12:51:30Z
dc.date.available
2021-03-20T04:42:23Z
dc.date.available
2021-03-24T12:51:30Z
dc.date.issued
2021-03-07
dc.identifier.issn
2040-3364
dc.identifier.issn
2040-3372
dc.identifier.other
10.1039/d0nr08668a
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/475526
dc.identifier.doi
10.3929/ethz-b-000475526
dc.description.abstract
Enzyme–nanoparticle interactions can give rise to a range of new phenomena, most notably significant enzymatic rate enhancement. Accordingly, the careful study and optimization of such systems is likely to give rise to advanced biosensing applications. Herein, we report a systematic study of the interactions between nuclease enzymes and oligonucleotide-coated gold nanoparticles (spherical nucleic acids, SNAs), with the aim of revealing phenomena worthy of evolution into functional nanosystems. Specifically, we study two nucleases, an exonuclease (ExoIII) and an endonuclease (Nt.BspQI), via fluorescence-based kinetic experiments, varying parameters including enzyme and substrate concentrations, and nanoparticle size and surface coverage in non-recycling and a recycling formats. We demonstrate the tuning of nuclease activity by SNA characteristics and show that the modular units of SNAs can be leveraged to either accelerate or suppress nuclease kinetics. Additionally, we observe that the enzymes are capable of cleaving restriction sites buried deep in the oligonucleotide surface layer and that enzymatic rate enhancement occurs in the target recycling format but not in the non-recycling format. Furthermore, we demonstrate a new SNA phenomenon, we term ‘target stacking’, whereby nucleic acid hybridization efficiency increases as enzyme cleavage proceeds during the beginning of a reaction. This investigation provides important data to guide the design of novel SNAs in biosensing and in vitro diagnostic applications.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Royal Society of Chemistry
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/3.0/
dc.title
Tuning DNA–nanoparticle conjugate properties allows modulation of nuclease activity
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 3.0 Unported
dc.date.published
2021-02-25
ethz.journal.title
Nanoscale
ethz.journal.volume
13
en_US
ethz.journal.issue
9
en_US
ethz.pages.start
4956
en_US
ethz.pages.end
4970
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.publication.place
Cambridge
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-03-20T04:42:36Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-03-24T12:51:39Z
ethz.rosetta.lastUpdated
2021-03-24T12:51:39Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Tuning%20DNA%E2%80%93nanoparticle%20conjugate%20properties%20allows%20modulation%20of%20nuclease%20activity&rft.jtitle=Nanoscale&rft.date=2021-03-07&rft.volume=13&rft.issue=9&rft.spage=4956&rft.epage=4970&rft.issn=2040-3364&2040-3372&rft.au=Hsiao,%20Jeff%20C.&Buryska,%20Tomas&Kim,%20Eunjung&Howes,%20Philip%20D.&deMello,%20Andrew%20J.&rft.genre=article&rft_id=info:doi/10.1039/d0nr08668a&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record