Mapping trees along urban street networks with deep learning and street-level imagery
Abstract
Planning and managing urban forests for livable cities remains a challenge worldwide owing to sparse information on the spatial distribution, structure and composition of urban trees and forests. National and municipal sources of tree inventory remain limited due to a lack of detailed, consistent and frequent inventory assessments. Despite advancements in research on the automation of urban tree mapping using Light Detection and Ranging (LiDAR) or high-resolution satellite imagery, in practice most municipalities still perform labor-intensive field surveys to collect and update tree inventories. We present a robust, affordable and rapid method for creating tree inventories in any urban region where sufficient street-level imagery is readily available. Our approach is novel in that we use a Mask Regional Convolutional Neural Network (Mask R-CNN) to detect and locate separate tree instances from street-level imagery, thereby successfully creating shape masks around unique fuzzy urban objects like trees. The novelty of this method is enhanced by using monocular depth estimation and triangulation to estimate precise tree location, relying only on photographs and images taken from the street. Experiments across four cities show that our method is transferable to different image sources (Google Street View, Mapillary) and urban ecosystems. We successfully detect 70% of all public and private trees recorded in a ground-truth campaign across Metro Vancouver. The accuracy of geolocation is also promising. We automatically locate public and private trees with a mean error in the absolute position ranging from 4 to 6 m, which is comparable to ground-truth measurements in conventional manual urban tree inventory campaigns. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
ISPRS Journal of Photogrammetry and Remote SensingBand
Seiten / Artikelnummer
Verlag
ElsevierThema
Deep learning; Instance segmentation; Monocular depth estimation; Street-level images; Urban forest managementOrganisationseinheit
09723 - Griess, Verena C. / Griess, Verena C.