Mapping trees along urban street networks with deep learning and street-level imagery
dc.contributor.author
Lumnitz, Stefanie
dc.contributor.author
Devisscher, Tahia
dc.contributor.author
Mayaud, Jerome R.
dc.contributor.author
Radic, Valentina
dc.contributor.author
Coops, Nicholas C.
dc.contributor.author
Griess, Verena
dc.date.accessioned
2021-03-23T06:38:46Z
dc.date.available
2021-03-22T07:51:36Z
dc.date.available
2021-03-23T06:38:46Z
dc.date.issued
2021-05
dc.identifier.issn
0924-2716
dc.identifier.other
10.1016/j.isprsjprs.2021.01.016
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/475614
dc.description.abstract
Planning and managing urban forests for livable cities remains a challenge worldwide owing to sparse information on the spatial distribution, structure and composition of urban trees and forests. National and municipal sources of tree inventory remain limited due to a lack of detailed, consistent and frequent inventory assessments. Despite advancements in research on the automation of urban tree mapping using Light Detection and Ranging (LiDAR) or high-resolution satellite imagery, in practice most municipalities still perform labor-intensive field surveys to collect and update tree inventories. We present a robust, affordable and rapid method for creating tree inventories in any urban region where sufficient street-level imagery is readily available. Our approach is novel in that we use a Mask Regional Convolutional Neural Network (Mask R-CNN) to detect and locate separate tree instances from street-level imagery, thereby successfully creating shape masks around unique fuzzy urban objects like trees. The novelty of this method is enhanced by using monocular depth estimation and triangulation to estimate precise tree location, relying only on photographs and images taken from the street. Experiments across four cities show that our method is transferable to different image sources (Google Street View, Mapillary) and urban ecosystems. We successfully detect 70% of all public and private trees recorded in a ground-truth campaign across Metro Vancouver. The accuracy of geolocation is also promising. We automatically locate public and private trees with a mean error in the absolute position ranging from 4 to 6 m, which is comparable to ground-truth measurements in conventional manual urban tree inventory campaigns.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Deep learning
en_US
dc.subject
Instance segmentation
en_US
dc.subject
Monocular depth estimation
en_US
dc.subject
Street-level images
en_US
dc.subject
Urban forest management
en_US
dc.title
Mapping trees along urban street networks with deep learning and street-level imagery
en_US
dc.type
Journal Article
dc.date.published
2021-03-18
ethz.journal.title
ISPRS Journal of Photogrammetry and Remote Sensing
ethz.journal.volume
175
en_US
ethz.journal.abbreviated
ISPRS j. photogramm. remote sens.
ethz.pages.start
144
en_US
ethz.pages.end
157
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02722 - Institut für Terrestrische Oekosysteme / Institute of Terrestrial Ecosystems::09723 - Griess, Verena C. / Griess, Verena C.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02722 - Institut für Terrestrische Oekosysteme / Institute of Terrestrial Ecosystems::09723 - Griess, Verena C. / Griess, Verena C.
en_US
ethz.date.deposited
2021-03-22T07:51:45Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-23T06:38:57Z
ethz.rosetta.lastUpdated
2022-03-29T05:56:02Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mapping%20trees%20along%20urban%20street%20networks%20with%20deep%20learning%20and%20street-level%20imagery&rft.jtitle=ISPRS%20Journal%20of%20Photogrammetry%20and%20Remote%20Sensing&rft.date=2021-05&rft.volume=175&rft.spage=144&rft.epage=157&rft.issn=0924-2716&rft.au=Lumnitz,%20Stefanie&Devisscher,%20Tahia&Mayaud,%20Jerome%20R.&Radic,%20Valentina&Coops,%20Nicholas%20C.&rft.genre=article&rft_id=info:doi/10.1016/j.isprsjprs.2021.01.016&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [130548]