Algorithmic recourse: From counterfactual explanations to interventions
dc.contributor.author
Karimi, Amir-Hossein
dc.contributor.author
Schölkopf, Bernhard
dc.contributor.author
Valera, Isabel
dc.date.accessioned
2021-04-28T13:16:45Z
dc.date.available
2021-03-23T03:58:57Z
dc.date.available
2021-04-28T13:16:45Z
dc.date.issued
2021-03
dc.identifier.isbn
978-1-4503-8309-7
en_US
dc.identifier.other
10.1145/3442188.3445899
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/475842
dc.description.abstract
As machine learning is increasingly used to inform consequential decision-making (e.g., pre-trial bail and loan approval), it becomes important to explain how the system arrived at its decision, and also suggest actions to achieve a favorable decision. Counterfactual explanations -"how the world would have (had) to be different for a desirable outcome to occur"- aim to satisfy these criteria. Existing works have primarily focused on designing algorithms to obtain counterfactual explanations for a wide range of settings. However, it has largely been overlooked that ultimately, one of the main objectives is to allow people to act rather than just understand. In layman's terms, counterfactual explanations inform an individual where they need to get to, but not how to get there. In this work, we rely on causal reasoning to caution against the use of counterfactual explanations as a recommendable set of actions for recourse. Instead, we propose a shift of paradigm from recourse via nearest counterfactual explanations to recourse through minimal interventions, shifting the focus from explanations to interventions. © 2021 ACM
en_US
dc.language.iso
en
en_US
dc.publisher
ACM
en_US
dc.subject
algorithmic recourse
en_US
dc.subject
explainable artificial intelligence
en_US
dc.subject
causal inference
en_US
dc.subject
counterfactual explanations
en_US
dc.subject
contrastive explanations
en_US
dc.subject
consequential recommendations
en_US
dc.subject
minimal interventions
en_US
dc.title
Algorithmic recourse: From counterfactual explanations to interventions
en_US
dc.type
Conference Paper
dc.date.published
2021-03-03
ethz.book.title
FAccT '21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
en_US
ethz.pages.start
353
en_US
ethz.pages.end
362
en_US
ethz.event
4th Annual ACM Conference on Fairness, Accountability, and Transparency (FAccT 2021) (virtual)
en_US
ethz.event.location
Toronto, ON, Canada
en_US
ethz.event.date
March 3-10, 2021
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09664 - Schölkopf, Bernhard / Schölkopf, Bernhard
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09462 - Hofmann, Thomas / Hofmann, Thomas
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09664 - Schölkopf, Bernhard / Schölkopf, Bernhard
ethz.date.deposited
2021-03-23T03:59:01Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-04-28T13:16:54Z
ethz.rosetta.lastUpdated
2022-03-29T06:54:26Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Algorithmic%20recourse:%20From%20counterfactual%20explanations%20to%20interventions&rft.date=2021-03&rft.spage=353&rft.epage=362&rft.au=Karimi,%20Amir-Hossein&Sch%C3%B6lkopf,%20Bernhard&Valera,%20Isabel&rft.isbn=978-1-4503-8309-7&rft.genre=proceeding&rft_id=info:doi/10.1145/3442188.3445899&rft.btitle=FAccT%20'21:%20Proceedings%20of%20the%202021%20ACM%20Conference%20on%20Fairness,%20Accountability,%20and%20Transparency
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [33088]