Interpretable Detection of Partial Discharge in Power Lines with Deep Learning
dc.contributor.author
Michau, Gabriel
dc.contributor.author
Hsu, Chi-Ching
dc.contributor.author
Fink, Olga
dc.date.accessioned
2021-04-01T10:54:39Z
dc.date.available
2021-03-25T04:33:04Z
dc.date.available
2021-04-01T10:54:39Z
dc.date.issued
2021-03-02
dc.identifier.issn
1424-8220
dc.identifier.other
10.3390/s21062154
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/476202
dc.identifier.doi
10.3929/ethz-b-000476202
dc.description.abstract
Partial discharge (PD) is a common indication of faults in power systems, such as generators and cables. These PDs can eventually result in costly repairs and substantial power outages. PD detection traditionally relies on hand-crafted features and domain expertise to identify very specific pulses in the electrical current, and the performance declines in the presence of noise or of superposed pulses. In this paper, we propose a novel end-to-end framework based on convolutional neural networks. The framework has two contributions: First, it does not require any feature extraction and enables robust PD detection. Second, we devise the pulse activation map. It provides interpretability of the results for the domain experts with the identification of the pulses that led to the detection of the PDs. The performance is evaluated on a public dataset for the detection of damaged power lines. An ablation study demonstrates the benefits of each part of the proposed framework.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Partial discharges
en_US
dc.subject
Power distribution lines
en_US
dc.subject
Temporal CNN
en_US
dc.subject
Fault detection
en_US
dc.title
Interpretable Detection of Partial Discharge in Power Lines with Deep Learning
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-03-19
ethz.journal.title
Sensors
ethz.journal.volume
21
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
2154
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02604 - Inst. für Bau- & Infrastrukturmanagement / Inst. Construction&Infrastructure Manag.::09642 - Fink, Olga (ehemalig) / Fink, Olga (former)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02604 - Inst. für Bau- & Infrastrukturmanagement / Inst. Construction&Infrastructure Manag.::09642 - Fink, Olga (ehemalig) / Fink, Olga (former)
ethz.date.deposited
2021-03-25T04:33:08Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-04-01T10:54:50Z
ethz.rosetta.lastUpdated
2024-02-02T13:23:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Interpretable%20Detection%20of%20Partial%20Discharge%20in%20Power%20Lines%20with%20Deep%20Learning&rft.jtitle=Sensors&rft.date=2021-03-02&rft.volume=21&rft.issue=6&rft.spage=2154&rft.issn=1424-8220&rft.au=Michau,%20Gabriel&Hsu,%20Chi-Ching&Fink,%20Olga&rft.genre=article&rft_id=info:doi/10.3390/s21062154&
Files in this item
Publication type
-
Journal Article [130514]