The Effectiveness of Image Augmentation in Deep Learning Networks for Detecting COVID-19: A Geometric Transformation Perspective
dc.contributor.author
Elgendi, Mohamed
dc.contributor.author
Nasir, Muhammad Umer
dc.contributor.author
Tang, Qunfeng
dc.contributor.author
Smith, David R.M.
dc.contributor.author
Grenier, John P.
dc.contributor.author
Batte, Catherine
dc.contributor.author
Spieler, Bradley M.
dc.contributor.author
Leslie, William D.
dc.contributor.author
Menon, Carlo
dc.contributor.author
Fletcher, Richard R.
dc.contributor.author
Howard, Newton
dc.contributor.author
Ward, Rabab K.
dc.contributor.author
Parker, William
dc.contributor.author
Nicolaou, Savvas
dc.date.accessioned
2021-03-25T14:08:47Z
dc.date.available
2021-03-25T04:33:45Z
dc.date.available
2021-03-25T14:08:47Z
dc.date.issued
2021-03
dc.identifier.issn
2296-858X
dc.identifier.other
10.3389/fmed.2021.629134
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/476208
dc.identifier.doi
10.3929/ethz-b-000476208
dc.description.abstract
Chest X-ray imaging technology used for the early detection and screening of COVID-19 pneumonia is both accessible worldwide and affordable compared to other non-invasive technologies. Additionally, deep learning methods have recently shown remarkable results in detecting COVID-19 on chest X-rays, making it a promising screening technology for COVID-19. Deep learning relies on a large amount of data to avoid overfitting. While overfitting can result in perfect modeling on the original training dataset, on a new testing dataset it can fail to achieve high accuracy. In the image processing field, an image augmentation step (i.e., adding more training data) is often used to reduce overfitting on the training dataset, and improve prediction accuracy on the testing dataset. In this paper, we examined the impact of geometric augmentations as implemented in several recent publications for detecting COVID-19. We compared the performance of 17 deep learning algorithms with and without different geometric augmentations. We empirically examined the influence of augmentation with respect to detection accuracy, dataset diversity, augmentation methodology, and network size. Contrary to expectation, our results show that the removal of recently used geometrical augmentation steps actually improved the Matthews correlation coefficient (MCC) of 17 models. The MCC without augmentation (MCC = 0.51) outperformed four recent geometrical augmentations (MCC = 0.47 for Data Augmentation 1, MCC = 0.44 for Data Augmentation 2, MCC = 0.48 for Data Augmentation 3, and MCC = 0.49 for Data Augmentation 4). When we retrained a recently published deep learning without augmentation on the same dataset, the detection accuracy significantly increased, with a χ2McNemar's statistic=163.2χMcNemar′s statistic2=163.2 and a p-value of 2.23 × 10−37. This is an interesting finding that may improve current deep learning algorithms using geometrical augmentations for detecting COVID-19. We also provide clinical perspectives on geometric augmentation to consider regarding the development of a robust COVID-19 X-ray-based detector.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Frontiers Media
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
The Effectiveness of Image Augmentation in Deep Learning Networks for Detecting COVID-19: A Geometric Transformation Perspective
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-03-01
ethz.journal.title
Frontiers in Medicine
ethz.journal.volume
8
en_US
ethz.journal.abbreviated
Front. Med.
ethz.pages.start
629134
en_US
ethz.size
12 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Lausanne
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::09715 - Menon, Carlo / Menon, Carlo
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::09715 - Menon, Carlo / Menon, Carlo
en_US
ethz.date.deposited
2021-03-25T04:33:51Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-03-25T14:08:57Z
ethz.rosetta.lastUpdated
2022-03-29T05:59:33Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=The%20Effectiveness%20of%20Image%20Augmentation%20in%20Deep%20Learning%20Networks%20for%20Detecting%20COVID-19:%20A%20Geometric%20Transformation%20Perspective&rft.jtitle=Frontiers%20in%20Medicine&rft.date=2021-03&rft.volume=8&rft.spage=629134&rft.issn=2296-858X&rft.au=Elgendi,%20Mohamed&Nasir,%20Muhammad%20Umer&Tang,%20Qunfeng&Smith,%20David%20R.M.&Grenier,%20John%20P.&rft.genre=article&rft_id=info:doi/10.3389/fmed.2021.629134&
Files in this item
Publication type
-
Journal Article [132161]