Stochastic spectral embedding
dc.contributor.author
Marelli, Stefano
dc.contributor.author
Wagner, Paul-Remo
dc.contributor.author
Lataniotis, Christos
dc.contributor.author
Sudret, Bruno
dc.date.accessioned
2021-04-01T10:43:28Z
dc.date.available
2021-03-26T10:33:47Z
dc.date.available
2021-04-01T10:43:28Z
dc.date.issued
2021
dc.identifier.issn
2152-5080
dc.identifier.issn
2152-5099
dc.identifier.other
10.1615/int.j.uncertaintyquantification.2020034395
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/476526
dc.description.abstract
Constructing approximations that can accurately mimic the behavior of complex models at reduced computational costs is an important aspect of uncertainty quantification. Despite their flexibility and efficiency, classical surrogate models such as kriging or polynomial chaos expansions tend to struggle with highly nonlinear, localized, or nonstationary computational models. We hereby propose a novel sequential adaptive surrogate modeling method based on recursively embedding locally spectral expansions. It is achieved by means of disjoint recursive partitioning of the input domain, which consists in sequentially splitting the latter into smaller subdomains, and constructing simpler local spectral expansions in each, exploiting the trade-off complexity vs. locality. The resulting expansion, which we refer to as "stochastic spectral embedding" (SSE), is a piecewise continuous approximation of the model response that shows promising approximation capabilities, and good scaling with both the problem dimension and the size of the training set. We finally show how the method compares favorably against state-of-the-art sparse polynomial chaos expansions on a set of models with different complexity and input dimension. © 2021 by Begell House, Inc.
en_US
dc.language.iso
en
en_US
dc.publisher
Begell House
en_US
dc.subject
Stochastic spectral embedding
en_US
dc.subject
Surrogate modeling
en_US
dc.subject
Spectral expansions
en_US
dc.subject
Sparse regression
en_US
dc.subject
Uncertainty quantification
en_US
dc.title
Stochastic spectral embedding
en_US
dc.type
Journal Article
ethz.journal.title
International Journal for Uncertainty Quantification
ethz.journal.volume
11
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
25
en_US
ethz.pages.end
47
en_US
ethz.identifier.wos
ethz.publication.place
Redding, CT
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03962 - Sudret, Bruno / Sudret, Bruno
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03962 - Sudret, Bruno / Sudret, Bruno
en_US
ethz.date.deposited
2021-03-26T10:33:54Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-04-01T10:49:07Z
ethz.rosetta.lastUpdated
2022-03-29T06:09:30Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Stochastic%20spectral%20embedding&rft.jtitle=International%20Journal%20for%20Uncertainty%20Quantification&rft.date=2021&rft.volume=11&rft.issue=2&rft.spage=25&rft.epage=47&rft.issn=2152-5080&2152-5099&rft.au=Marelli,%20Stefano&Wagner,%20Paul-Remo&Lataniotis,%20Christos&Sudret,%20Bruno&rft.genre=article&rft_id=info:doi/10.1615/int.j.uncertaintyquantification.2020034395&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [130566]