Clustering Data-Driven Local Control Schemes in Active Distribution Grids
dc.contributor.author
Karagiannopoulos, Stavros
dc.contributor.author
Valverde, Gustavo
dc.contributor.author
Aristidou, Petros
dc.contributor.author
Hug, Gabriela
dc.date.accessioned
2021-03-30T10:35:19Z
dc.date.available
2021-03-27T03:56:25Z
dc.date.available
2021-03-30T10:35:19Z
dc.date.issued
2021-03
dc.identifier.other
10.1109/JSYST.2020.3004277
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/476652
dc.description.abstract
Controllable distributed energy resources (DERs) in active distribution grids (ADGs) provide operational flexibility to system operators, thereby, offering the means to address various challenges. Existing local controllers for these resources are communication-free, robust, and cheap, but with suboptimal performance compared to centralized approaches that heavily rely on monitoring and communication. Data-driven local controls can bridge the gap by providing customized local controllers designed from historical data, offline optimization, and machine learning methods. These local controllers emulate the optimal behavior under expected operating conditions, without the use of communication. However, they exhibit high implementation overhead with the need of individual programming of DER controllers, especially when there are many DERs or when new units are installed at a later stage. In this article, we propose a clustering method to decrease the implementation overhead by reducing the individual DER controls into a smaller set while still achieving high performance. We show the performance of the method on a three-phase, unbalanced, low-voltage, distribution network.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Active distribution networks
en_US
dc.subject
data-driven control design
en_US
dc.subject
machine learning
en_US
dc.subject
optimal power flow (OPF)
en_US
dc.subject
optimal control
en_US
dc.subject
time-series clustering
en_US
dc.title
Clustering Data-Driven Local Control Schemes in Active Distribution Grids
en_US
dc.type
Journal Article
dc.date.published
2020-07-03
ethz.journal.title
IEEE Systems Journal
ethz.journal.volume
15
en_US
ethz.journal.issue
1
en_US
ethz.pages.start
1467
en_US
ethz.pages.end
1476
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02632 - Inst. f. El. Energieübertragung u. Hoch. / Power Systems and High Voltage Lab.::09481 - Hug, Gabriela / Hug, Gabriela
ethz.date.deposited
2021-03-27T03:56:30Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-03-30T10:35:33Z
ethz.rosetta.lastUpdated
2022-03-29T06:06:59Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Clustering%20Data-Driven%20Local%20Control%20Schemes%20in%20Active%20Distribution%20Grids&rft.jtitle=IEEE%20Systems%20Journal&rft.date=2021-03&rft.volume=15&rft.issue=1&rft.spage=1467&rft.epage=1476&rft.au=Karagiannopoulos,%20Stavros&Valverde,%20Gustavo&Aristidou,%20Petros&Hug,%20Gabriela&rft.genre=article&rft_id=info:doi/10.1109/JSYST.2020.3004277&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [120797]