Advanced three-dimensional electromagnetic modeling using a nested integral equation approach
dc.contributor.author
Chen, Chaojian
dc.contributor.author
Kruglyakov, Mikhail
dc.contributor.author
Kuvshinov, Alexey
dc.date.accessioned
2021-04-13T05:40:49Z
dc.date.available
2021-04-12T20:35:22Z
dc.date.available
2021-04-13T05:40:49Z
dc.date.issued
2021-07-01
dc.identifier.issn
0956-540X
dc.identifier.issn
1365-246X
dc.identifier.other
10.1093/gji/ggab072
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/478370
dc.description.abstract
Most of the existing 3-D electromagnetic (EM) modelling solvers based on the integral equation (IE) method exploit fast Fourier transform (FFT) to accelerate the matrix–vector multiplications. This in turn requires a laterally uniform discretization of the modelling domain. However, there is often a need for multiscale modelling and inversion, for instance, to properly account for the effects of non-uniform distant structures and, at the same time, to accurately model the effects from local anomalies. In such scenarios, the usage of laterally uniform grids leads to excessive computational loads, in terms of both memory and time. To alleviate this problem, we developed an efficient 3-D EM modelling tool based on a multinested IE approach. Within this approach, the IE modelling is first performed at a large domain and on a (laterally uniform) coarse grid, and then the results are refined in the region of interest by performing modelling at a smaller domain and on a (laterally uniform) denser grid. At the latter stage, the modelling results obtained at the previous stage are exploited. The lateral uniformity of the grids at each stage allows us to keep using the FFT for the acceleration of matrix–vector multiplications. An important novelty of the paper is the development of a ‘rim domain’ concept that further improves the performance of the multinested IE approach. We verify the developed tool on both idealized and realistic 3-D conductivity models, and demonstrate its efficiency and accuracy.
en_US
dc.language.iso
en
en_US
dc.publisher
Oxford University Press
en_US
dc.subject
Electromagnetic theory
en_US
dc.subject
Geomagnetic induction
en_US
dc.subject
Magnetotellurics
en_US
dc.subject
Numerical modelling
en_US
dc.title
Advanced three-dimensional electromagnetic modeling using a nested integral equation approach
en_US
dc.type
Journal Article
dc.date.published
2021-02-19
ethz.journal.title
Geophysical Journal International
ethz.journal.volume
226
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Geophys. j. int.
ethz.pages.start
114
en_US
ethz.pages.end
130
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erdwissenschaften / Dep. of Earth Sciences::02506 - Institut für Geophysik / Institute of Geophysics::03734 - Jackson, Andrew / Jackson, Andrew
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erdwissenschaften / Dep. of Earth Sciences::02506 - Institut für Geophysik / Institute of Geophysics::03734 - Jackson, Andrew / Jackson, Andrew
en_US
ethz.date.deposited
2021-04-12T20:35:30Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-04-13T05:41:02Z
ethz.rosetta.lastUpdated
2023-02-06T21:41:12Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Advanced%20three-dimensional%20electromagnetic%20modeling%20using%20a%20nested%20integral%20equation%20approach&rft.jtitle=Geophysical%20Journal%20International&rft.date=2021-07-01&rft.volume=226&rft.issue=1&rft.spage=114&rft.epage=130&rft.issn=0956-540X&1365-246X&rft.au=Chen,%20Chaojian&Kruglyakov,%20Mikhail&Kuvshinov,%20Alexey&rft.genre=article&rft_id=info:doi/10.1093/gji/ggab072&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [122038]