Show simple item record

dc.contributor.author
Ohs, Nicholas
dc.contributor.author
Collins, Caitlyn J.
dc.contributor.author
Tourolle, Duncan C.
dc.contributor.author
Atkins, Penny R.
dc.contributor.author
Schroeder, Bryant J.
dc.contributor.author
Blauth, Michael
dc.contributor.author
Christen, Patrik
dc.contributor.author
Müller, Ralph
dc.date.accessioned
2021-04-13T07:55:40Z
dc.date.available
2021-04-13T03:09:13Z
dc.date.available
2021-04-13T07:55:40Z
dc.date.issued
2021-06
dc.identifier.issn
8756-3282
dc.identifier.other
10.1016/j.bone.2021.115930
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/478378
dc.identifier.doi
10.3929/ethz-b-000478378
dc.description.abstract
Radius fractures are among the most common fracture types; however, there is limited consensus on the standard of care. A better understanding of the fracture healing process could help to shape future treatment protocols and thus improve functional outcomes of patients. High-resolution peripheral quantitative computed tomography (HR-pQCT) allows monitoring and evaluation of the radius on the micro-structural level, which is crucial to our understanding of fracture healing. However, current radius fracture studies using HR-pQCT are limited by the lack of automated contouring routines, hence only including small number of patients due to the prohibitively time-consuming task of manually contouring HR-pQCT images. In the present study, a new method to automatically contour images of distal radius fractures based on 3D morphological geodesic active contours (3D-GAC) is presented. Contours of 60 HR-pQCT images of fractured and conservatively treated radii spanning the healing process up to one year post-fracture are compared to the current gold standard, hand-drawn 2D contours, to assess the accuracy of the algorithm. Furthermore, robustness was established by applying the algorithm to HR-pQCT images of intact radii of 73 patients and comparing the resulting morphometric indices to the gold standard patient evaluation including a threshold- and dilation-based contouring approach. Reproducibility was evaluated using repeat scans of intact radii of 19 patients. The new 3D-GAC approach offers contours within inter-operator variability for images of fractured distal radii (mean Dice score of 0.992 ± 0.005 versus median operator Dice score of 0.992 ± 0.006). The generated contours for images of intact radii yielded morphometric indices within the in vivo reproducibility limits compared to the current gold standard. Additionally, the 3D-GAC approach shows an improved robustness against failure (n = 5) when dealing with cortical interruptions, fracture fragments, etc. compared with the automatic, default manufacturer pipeline (n = 40). Using the 3D-GAC approach assures consistent results, while reducing the need for time-consuming hand-contouring.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Active contours
en_US
dc.subject
Automated 3D segmentation
en_US
dc.subject
HR-pQCT
en_US
dc.subject
Fracture healing
en_US
dc.subject
Distal radius
en_US
dc.title
Automated segmentation of fractured distal radii by 3D geodesic active contouring of in vivo HR-pQCT images
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-03-19
ethz.journal.title
Bone
ethz.journal.volume
147
en_US
ethz.pages.start
115930
en_US
ethz.size
12 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Local remodelling and mechanoregulation of bone fracture healing in healthy, aged, and osteoporotic humans
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Philadelphia, PA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03565 - Müller, Ralph / Müller, Ralph
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03565 - Müller, Ralph / Müller, Ralph
ethz.grant.agreementno
170205
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte Lebenswissenschaften
ethz.date.deposited
2021-04-13T03:09:26Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-04-13T07:55:51Z
ethz.rosetta.lastUpdated
2022-03-29T06:31:25Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Automated%20segmentation%20of%20fractured%20distal%20radii%20by%203D%20geodesic%20active%20contouring%20of%20in%20vivo%20HR-pQCT%20images&rft.jtitle=Bone&rft.date=2021-06&rft.volume=147&rft.spage=115930&rft.issn=8756-3282&rft.au=Ohs,%20Nicholas&Collins,%20Caitlyn%20J.&Tourolle,%20Duncan%20C.&Atkins,%20Penny%20R.&Schroeder,%20Bryant%20J.&rft.genre=article&rft_id=info:doi/10.1016/j.bone.2021.115930&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record