Show simple item record

dc.contributor.author
Wabersich, Kim P.
dc.contributor.author
Zeilinger, Melanie N.
dc.date.accessioned
2021-04-15T05:25:37Z
dc.date.available
2021-04-15T02:59:41Z
dc.date.available
2021-04-15T05:25:37Z
dc.date.issued
2021-07
dc.identifier.issn
0005-1098
dc.identifier.other
10.1016/j.automatica.2021.109597
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/478766
dc.description.abstract
The transfer of reinforcement learning (RL) techniques into real-world applications is challenged by safety requirements in the presence of physical limitations. Most RL methods, in particular the most popular algorithms, do not support explicit consideration of state and input constraints. In this paper, we address this problem for nonlinear systems with continuous state and input spaces by introducing a predictive safety filter, which is able to turn a constrained dynamical system into an unconstrained safe system and to which any RL algorithm can be applied ‘out-of-the-box’. The predictive safety filter receives the proposed control input and decides, based on the current system state, if it can be safely applied to the real system, or if it has to be modified otherwise. Safety is thereby established by a continuously updated safety policy, which is based on a model predictive control formulation using a data-driven system model and considering state and input dependent uncertainties.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Safe learning-based control
en_US
dc.subject
Control of constrained systems
en_US
dc.subject
Robust control of nonlinear systems
en_US
dc.subject
Data-based control
en_US
dc.title
A predictive safety filter for learning-based control of constrained nonlinear dynamical systems
en_US
dc.type
Journal Article
dc.date.published
2021-04-05
ethz.journal.title
Automatica
ethz.journal.volume
129
en_US
ethz.pages.start
109597
en_US
ethz.size
13 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09563 - Zeilinger, Melanie / Zeilinger, Melanie
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09563 - Zeilinger, Melanie / Zeilinger, Melanie
ethz.date.deposited
2021-04-15T02:59:49Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-04-15T05:25:46Z
ethz.rosetta.lastUpdated
2023-02-06T21:41:52Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20predictive%20safety%20filter%20for%20learning-based%20control%20of%20constrained%20nonlinear%20dynamical%20systems&rft.jtitle=Automatica&rft.date=2021-07&rft.volume=129&rft.spage=109597&rft.issn=0005-1098&rft.au=Wabersich,%20Kim%20P.&Zeilinger,%20Melanie%20N.&rft.genre=article&rft_id=info:doi/10.1016/j.automatica.2021.109597&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record