Using process mining to improve productivity in make-to-stock manufacturing
dc.contributor.author
Lorenz, Rafael
dc.contributor.author
Senoner, Julian
dc.contributor.author
Sihn, Wilfried
dc.contributor.author
Netland, Torbjörn
dc.date.accessioned
2021-08-18T12:26:05Z
dc.date.available
2021-04-20T13:58:18Z
dc.date.available
2021-04-21T06:59:38Z
dc.date.available
2021-06-30T10:15:48Z
dc.date.available
2021-08-16T09:17:36Z
dc.date.available
2021-08-18T12:26:05Z
dc.date.issued
2021
dc.identifier.issn
0020-7543
dc.identifier.issn
1366-588X
dc.identifier.other
10.1080/00207543.2021.1906460
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/479621
dc.identifier.doi
10.3929/ethz-b-000479621
dc.description.abstract
This paper proposes a data-driven procedure to improve productivity in make-to-stock manufacturing. By leveraging recent developments in information systems research, the paper addresses manufacturing systems with high process complexity and variety. Specifically, the proposed procedure draws upon process mining to dynamically map and analyse manufacturing processes in an automated manner. This way, manufacturers can leverage data to overcome the limitations of existing process mapping methods, which only provide static snapshots of process flows. By bridging data and process science, process mining can exploit hitherto untapped potential for productivity improvement. The proposed procedure is empirically validated at a leading manufacturer of sanitary products. The field test leads to three concrete improvement suggestions for the company. This research contributes to the literature on production research by demonstrating a novel use of process mining in manufacturing and by guiding practitioners in its implementation.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Taylor & Francis
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Industry 4.0
en_US
dc.subject
Process mining
en_US
dc.subject
Productivity improvement
en_US
dc.subject
Make-to-stock production
en_US
dc.subject
Empirical study
en_US
dc.title
Using process mining to improve productivity in make-to-stock manufacturing
en_US
dc.type
Journal Article
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2021-04-13
ethz.journal.title
International Journal of Production Research
ethz.journal.volume
59
en_US
ethz.journal.issue
16
en_US
ethz.journal.abbreviated
Int. J. Prod. Res.
ethz.pages.start
4869
en_US
ethz.pages.end
4880
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::09501 - Netland, Torbjörn / Netland, Torbjörn
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::09501 - Netland, Torbjörn / Netland, Torbjörn
en_US
ethz.identifier.orcidWorkCode
92213897
ethz.date.deposited
2021-04-20T13:58:29Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-18T12:26:16Z
ethz.rosetta.lastUpdated
2024-02-02T14:32:30Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Using%20process%20mining%20to%20improve%20productivity%20in%20make-to-stock%20manufacturing&rft.jtitle=International%20Journal%20of%20Production%20Research&rft.date=2021&rft.volume=59&rft.issue=16&rft.spage=4869&rft.epage=4880&rft.issn=0020-7543&1366-588X&rft.au=Lorenz,%20Rafael&Senoner,%20Julian&Sihn,%20Wilfried&Netland,%20Torbj%C3%B6rn&rft.genre=article&article&rft_id=info:doi/10.1080/00207543.2021.1906460&
Files in this item
Publication type
-
Journal Article [134924]