In-situ monitoring of epitaxial ferroelectric thin-film growth
dc.contributor.author
Sarott, Martin F.
dc.contributor.author
Gradauskaite, Elzbieta
dc.contributor.author
Nordlander, Johanna
dc.contributor.author
Strkalj, Nives
dc.contributor.author
Trassin, Morgan
dc.date.accessioned
2022-04-19T07:09:25Z
dc.date.available
2021-04-21T07:40:43Z
dc.date.available
2021-04-21T10:02:31Z
dc.date.available
2021-05-18T07:27:41Z
dc.date.available
2021-06-09T07:16:17Z
dc.date.available
2021-06-28T13:53:41Z
dc.date.available
2022-03-07T12:29:51Z
dc.date.available
2022-03-07T13:42:14Z
dc.date.available
2022-04-19T07:08:26Z
dc.date.available
2022-04-19T07:09:25Z
dc.date.issued
2021-06-09
dc.identifier.issn
0953-8984
dc.identifier.issn
1361-648X
dc.identifier.other
10.1088/1361-648X/abf979
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/479735
dc.identifier.doi
10.3929/ethz-b-000479735
dc.description.abstract
In ferroelectric thin films, the polarization state and the domain configuration define the macroscopic ferroelectric properties such as the switching dynamics. Engineering of the ferroelectric domain configuration during synthesis is in permanent evolution and can be achieved by a range of approaches, extending from epitaxial strain tuning over electrostatic environment control to the influence of interface atomic termination. Exotic polar states are now designed in the technologically relevant ultrathin regime. The promise of energy-efficient devices based on ultrathin ferroelectric films depends on the ability to create, probe, and manipulate polar states in ever more complex epitaxial architectures. Because most ferroelectric oxides exhibit ferroelectricity during the epitaxial deposition process, the direct access to the polarization emergence and its evolution during the growth process, beyond the realm of existing structuralin situdiagnostic tools, is becoming of paramount importance. We review the recent progress in the field of monitoring polar states with an emphasis on the non-invasive probes allowing investigations of polarization during the thin film growth of ferroelectric oxides. A particular importance is given to optical second harmonic generationin situ. The ability to determine the net polarization and domain configuration of ultrathin films and multilayers during the growth of multilayers brings new insights towards a better understanding of the physics of ultrathin ferroelectrics and further control of ferroelectric-based heterostructures for devices.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IOP Publishing
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject
ferroelectric
en_US
dc.subject
in situ
en_US
dc.subject
SHG
en_US
dc.subject
multiferroic
en_US
dc.subject
thin films
en_US
dc.subject
XRD
en_US
dc.subject
domain formation
en_US
dc.title
In-situ monitoring of epitaxial ferroelectric thin-film growth
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.date.published
2021-04-19
ethz.journal.title
Journal of Physics: Condensed Matter
ethz.journal.volume
33
en_US
ethz.journal.issue
29
en_US
ethz.journal.abbreviated
J. Phys.: Condens. Matter
ethz.pages.start
293001
en_US
ethz.size
49 p. submitted version; 52 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.grant
Multifunctional oxide electronics using natural ferroelectric superlattices
en_US
ethz.grant
Designing oxide electronics with light
en_US
ethz.grant
In-situ second harmonic generation for emergent electronics in transition-metal oxides
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Bristol
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03918 - Fiebig, Manfred / Fiebig, Manfred
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03918 - Fiebig, Manfred / Fiebig, Manfred
en_US
ethz.grant.agreementno
188414
ethz.grant.agreementno
196061
ethz.grant.agreementno
694955
ethz.grant.agreementno
188414
ethz.grant.agreementno
196061
ethz.grant.agreementno
694955
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
Spark
ethz.grant.program
H2020
ethz.grant.program
Projekte MINT
ethz.grant.program
Spark
ethz.grant.program
H2020
ethz.date.deposited
2021-04-21T07:40:56Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.date.embargoend
2022-04-18
ethz.rosetta.installDate
2021-06-28T13:53:48Z
ethz.rosetta.lastUpdated
2024-02-02T16:42:16Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=In-situ%20monitoring%20of%20epitaxial%20ferroelectric%20thin-film%20growth&rft.jtitle=Journal%20of%20Physics:%20Condensed%20Matter&rft.date=2021-06-09&rft.volume=33&rft.issue=29&rft.spage=293001&rft.issn=0953-8984&1361-648X&rft.au=Sarott,%20Martin%20F.&Gradauskaite,%20Elzbieta&Nordlander,%20Johanna&Strkalj,%20Nives&Trassin,%20Morgan&rft.genre=article&rft_id=info:doi/10.1088/1361-648X/abf979&
Files in this item
Publication type
-
Review Article [4197]