Mesh Manifold Based Riemannian Motion Planning for Omnidirectional Micro Aerial Vehicles
dc.contributor.author
Pantic, Michael
dc.contributor.author
Ott, Lionel
dc.contributor.author
Cadena, Cesar
dc.contributor.author
Siegwart, Roland
dc.contributor.author
Nieto, Juan
dc.date.accessioned
2022-02-04T08:40:30Z
dc.date.available
2021-04-29T11:19:08Z
dc.date.available
2021-04-29T17:30:34Z
dc.date.available
2022-02-03T14:08:09Z
dc.date.available
2022-02-04T08:40:30Z
dc.date.issued
2021-07
dc.identifier.issn
2377-3766
dc.identifier.other
10.1109/LRA.2021.3061869
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/481344
dc.identifier.doi
10.3929/ethz-b-000481344
dc.description.abstract
This letter presents a novel on-line path planning method that enables aerial robots to interact with surfaces. We present a solution to the problem of finding trajectories that drive a robot towards a surface and move along it. Triangular meshes are used as a surface map representation that is free of fixed discretization and allows for very large workspaces. We propose to leverage planar parametrization methods to obtain a lower-dimensional topologically equivalent representation of the original surface. Furthermore, we interpret the original surface and its lower-dimensional representation as manifold approximations that allow the use of Riemannian Motion Policies (RMPs), resulting in an efficient, versatile, and elegant motion generation framework. We compare against several Rapidly-exploring Random Tree (RRT) planners, a customized CHOMP variant, and the discrete geodesic algorithm. Using extensive simulations on real-world data we show that the proposed planner can reliably plan high-quality near-optimal trajectories at minimal computational cost. The accompanying multimedia attachment demonstrates feasibility on a real OMAV. The obtained paths show less than 10% deviation from the theoretical optimum while facilitating reactive re-planning at kHz refresh rates, enabling flying robots to perform motion planning for interaction with complex surfaces.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Aerial systems
en_US
dc.subject
Motion and path planning
en_US
dc.title
Mesh Manifold Based Riemannian Motion Planning for Omnidirectional Micro Aerial Vehicles
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-02-24
ethz.journal.title
IEEE Robotics and Automation Letters
ethz.journal.volume
6
en_US
ethz.journal.issue
3
en_US
ethz.pages.start
4790
en_US
ethz.pages.end
4797
en_US
ethz.size
9 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02284 - NFS Digitale Fabrikation / NCCR Digital Fabrication
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
ethz.date.deposited
2021-04-29T11:19:23Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-04-29T17:30:43Z
ethz.rosetta.lastUpdated
2022-03-29T18:39:37Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mesh%20Manifold%20Based%20Riemannian%20Motion%20Planning%20for%20Omnidirectional%20Micro%20Aerial%20Vehicles&rft.jtitle=IEEE%20Robotics%20and%20Automation%20Letters&rft.date=2021-07&rft.volume=6&rft.issue=3&rft.spage=4790&rft.epage=4797&rft.issn=2377-3766&rft.au=Pantic,%20Michael&Ott,%20Lionel&Cadena,%20Cesar&Siegwart,%20Roland&Nieto,%20Juan&rft.genre=article&rft_id=info:doi/10.1109/LRA.2021.3061869&
Files in this item
Publication type
-
Journal Article [132360]