Tournament Quasirandomness from Local Counting
dc.contributor.author
Bucić, Matija
dc.contributor.author
Long, Eoin
dc.contributor.author
Shapira, Asaf
dc.contributor.author
Sudakov, Benny
dc.date.accessioned
2021-05-20T09:58:26Z
dc.date.available
2021-05-17T02:44:05Z
dc.date.available
2021-05-20T09:58:26Z
dc.date.issued
2021
dc.identifier.issn
0209-9683
dc.identifier.issn
1439-6912
dc.identifier.other
10.1007/s00493-020-4371-y
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/484256
dc.description.abstract
A well-known theorem of Chung and Graham states that if h ≥ 4 then a tournament T is quasirandom if and only if T contains each h-vertex tournament the ‘correct number’ of times as a subtournament. In this paper we investigate the relationship between quasirandomness of T and the count of a single h-vertex tournament H in T. We consider two types of counts, the global one and the local one.
We first observe that if T has the correct global count of H and h ≥ 7 then quasirandomness of T is only forced if H is transitive. The next natural question when studying quasirandom objects asks whether possessing the correct local counts of H is enough to force quasirandomness of T. A tournament H is said to be locally forcing if it has this property.
Variants of the local forcing problem have been studied before in both the graph and hypergraph settings. Perhaps the closest analogue of our problem was considered by Simonovits and Sós who looked at whether having ‘correct counts’ of a fixed graph H as an induced subgraph of G implies G must be quasirandom, in an appropriate sense. They proved that this is indeed the case when H is regular and conjectured that it holds for all H (except the path on 3 vertices). Contrary to the Simonovits-Sós conjecture, in the tournament setting we prove that a constant proportion of all tournaments are not locally forcing. In fact, any locally forcing tournament must itself be strongly quasirandom. On the other hand, unlike the global forcing case, we construct infinite families of non-transitive locally forcing tournaments.
en_US
dc.language.iso
en
en_US
dc.publisher
János Bolyai Mathematical Society; Springer
en_US
dc.title
Tournament Quasirandomness from Local Counting
en_US
dc.type
Journal Article
dc.date.published
2021-02-01
ethz.journal.title
Combinatorica
ethz.journal.volume
41
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
175
en_US
ethz.pages.end
208
en_US
ethz.grant
Problems in Extremal and Probabilistic Combinatorics
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Heidelberg
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02502 - Institut für Operations Research / Institute for Operations Research::03993 - Sudakov, Benjamin / Sudakov, Benjamin
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02502 - Institut für Operations Research / Institute for Operations Research::03993 - Sudakov, Benjamin / Sudakov, Benjamin
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02502 - Institut für Operations Research / Institute for Operations Research::03993 - Sudakov, Benjamin / Sudakov, Benjamin
ethz.grant.agreementno
196965
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-05-17T02:44:09Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-05-20T09:58:32Z
ethz.rosetta.lastUpdated
2022-03-29T07:39:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Tournament%20Quasirandomness%20from%20Local%20Counting&rft.jtitle=Combinatorica&rft.date=2021&rft.volume=41&rft.issue=2&rft.spage=175&rft.epage=208&rft.issn=0209-9683&1439-6912&rft.au=Buci%C4%87,%20Matija&Long,%20Eoin&Shapira,%20Asaf&Sudakov,%20Benny&rft.genre=article&rft_id=info:doi/10.1007/s00493-020-4371-y&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [132169]