Probabilistic model predictive safety certification for learning-based control
dc.contributor.author
Wabersich, Kim P.
dc.contributor.author
Hewing, Lukas
dc.contributor.author
Carron, Andrea
dc.contributor.author
Zeilinger, Melanie N.
dc.date.accessioned
2022-01-14T12:25:51Z
dc.date.available
2021-05-20T11:32:52Z
dc.date.available
2021-05-20T13:29:01Z
dc.date.available
2022-01-14T12:25:51Z
dc.date.issued
2022-01
dc.identifier.issn
0018-9286
dc.identifier.issn
1558-2523
dc.identifier.other
10.1109/TAC.2021.3049335
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/485350
dc.description.abstract
Reinforcement learning (RL) methods have demonstrated their efficiency in simulation environments. However, many applications for which RL offers great potential, such as autonomous driving, are also safety critical and require a certified closed-loop behavior in order to meet safety specifications in the presence of physical constraints. This paper introduces a concept called probabilistic model predictive safety certification (PMPSC), which can be combined with any RL algorithm and provides provable safety certificates in terms of state and input chance constraints for potentially large-scale systems. The certificate is realized through a stochastic tube that safely connects the current system state with a terminal set of states that is known to be safe. A novel formulation allows a recursively feasible real-time computation of such probabilistic tubes, despite the presence of possibly unbounded disturbances. A design procedure for PMPSC relying on Bayesian inference and recent advances in probabilistic set invariance is presented. Using a numerical car simulation, the method and its design procedure are illustrated by enhancing an RL algorithm with safety certificates.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Reinforcement learning (RL)
en_US
dc.subject
Stochastic systems
en_US
dc.subject
Predictive control
en_US
dc.subject
Safety
en_US
dc.title
Probabilistic model predictive safety certification for learning-based control
en_US
dc.type
Journal Article
dc.date.published
2021-01-05
ethz.journal.title
IEEE Transactions on Automatic Control
ethz.journal.volume
67
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
IEEE trans. automat. contr
ethz.pages.start
176
en_US
ethz.pages.end
188
en_US
ethz.grant
Safety and Performance for Human in the Loop Control
en_US
ethz.grant
Digital Fabrication - Advanced Building Processes in Architecture
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09563 - Zeilinger, Melanie / Zeilinger, Melanie
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09563 - Zeilinger, Melanie / Zeilinger, Melanie
ethz.grant.agreementno
157601
ethz.grant.agreementno
141853
ethz.grant.agreementno
157601
ethz.grant.agreementno
141853
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
SNF-Förderungsprofessuren Stufe 2
ethz.grant.program
NCCR (NFS)
ethz.grant.program
SNF-Förderungsprofessuren Stufe 2
ethz.grant.program
NCCR (NFS)
ethz.date.deposited
2021-05-20T11:32:57Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-01-14T12:25:58Z
ethz.rosetta.lastUpdated
2023-02-06T23:49:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Probabilistic%20model%20predictive%20safety%20certification%20for%20learning-based%20control&rft.jtitle=IEEE%20Transactions%20on%20Automatic%20Control&rft.date=2022-01&rft.volume=67&rft.issue=1&rft.spage=176&rft.epage=188&rft.issn=0018-9286&1558-2523&rft.au=Wabersich,%20Kim%20P.&Hewing,%20Lukas&Carron,%20Andrea&Zeilinger,%20Melanie%20N.&rft.genre=article&rft_id=info:doi/10.1109/TAC.2021.3049335&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [130890]