On the analysis of the earth’s surface vertical change by GNSS residual position time series prediction and analysis using radial basis function networks machine learning
dc.contributor.author
Kiani Shahvandi, Mostafa
dc.date.accessioned
2021-05-26T10:21:50Z
dc.date.available
2021-05-26T10:21:50Z
dc.date.issued
2020
dc.identifier.uri
http://hdl.handle.net/20.500.11850/486572
dc.description.abstract
In this paper, the method of radial basis function machine learning is employed to analyze and predict the GNSS residual position time series. Based on four different types of radial basis functions, which are the linear, Gaussian, multiquadratic, and inverse multiquadratic the centroids of which are determined by the method of kmeans clustering, two methods of estimation, namely least squares and ridge regression, and two schemes of prediction-batch and auto regressive-the residual positions of the time series are predicted and compared with their observed values. A case study is presented for the permanent GNSS station in Almeria, Spain. In this study, residual positions over time spanning from 1094.857 to 2070.857 in GPS time are analyzed. In the batch mode, the first 4641 points are used for training the network and 2000 points for the prediction phase. In the auto-regressive mode, for different steps, the residual positions are computed and compared with the observed values. It is shown that the best performance of the machine learning algorithms occurs when the linear basis functions, 200 centroids, least squares method, and batch scheme are used.
en_US
dc.language.iso
en
en_US
dc.publisher
Civilica
en_US
dc.subject
Geological movements
en_US
dc.subject
GNSS residual position time series
en_US
dc.subject
Radial basis functions
en_US
dc.subject
Machine learning
en_US
dc.subject
Prediction accuracy
en_US
dc.subject
sAMPE
en_US
dc.subject
STD
en_US
dc.title
On the analysis of the earth’s surface vertical change by GNSS residual position time series prediction and analysis using radial basis function networks machine learning
en_US
dc.type
Conference Paper
ethz.book.title
Second International Conference on Development of Materials Engineering Technology, Mining and Geology
en_US
ethz.event
2nd International Conference on Development of Materials engineering Technology, Mining, and Geology
en_US
ethz.event.location
Tehran, Iran
en_US
ethz.event.date
July 1, 2020
en_US
ethz.publication.place
Tehran
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::09707 - Soja, Benedikt / Soja, Benedikt
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::09707 - Soja, Benedikt / Soja, Benedikt
en_US
ethz.identifier.url
https://civilica.com/doc/1045031/
ethz.date.deposited
2021-01-05T11:49:59Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-05-26T10:22:02Z
ethz.rosetta.lastUpdated
2022-03-29T08:13:00Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/459476
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/459477
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20the%20analysis%20of%20the%20earth%E2%80%99s%20surface%20vertical%20change%20by%20GNSS%20residual%20position%20time%20series%20prediction%20and%20analysis%20using%20&rft.date=2020&rft.au=Kiani%20Shahvandi,%20Mostafa&rft.genre=proceeding&rft.btitle=Second%20International%20Conference%20on%20Development%20of%20Materials%20Engineering%20Technology,%20Mining%20and%20Geology
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [36280]