Show simple item record

dc.contributor.author
Wen, Chao
dc.contributor.author
Mou, Weiwei
dc.contributor.author
Huang, Ping
dc.contributor.author
Li, Zhongcan
dc.date.accessioned
2021-05-27T06:09:46Z
dc.date.available
2021-05-26T13:01:34Z
dc.date.available
2021-05-27T06:09:46Z
dc.date.issued
2020-04
dc.identifier.issn
1099-131X
dc.identifier.other
10.1002/for.2639
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/486665
dc.description.abstract
Delay prediction is an important issue associated with train timetabling and dispatching. Based on real-world operation records, accurate forecasting of delays is of immense significance in train operation and decisions of dispatchers. In this study, we established a model that illustrates the interaction between train delays and their affecting factors via train describer records on a Dutch railway line. Based on the main factors that affect train delay and the time series trend, we determined the independent and dependent variables. A long short-term memory (LSTM) prediction model in which the actual delay time corresponded to the dependent variable was established via Python. Finally, the prediction accuracy of the random forest model and artificial neural network model was compared. The results indicated that the LSTM model outperformed the other two models.
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.subject
Delay prediction
en_US
dc.subject
LSTM model
en_US
dc.subject
Railway
en_US
dc.subject
Real-world data
en_US
dc.title
A predictive model of train delays on a railway line
en_US
dc.type
Journal Article
dc.date.published
2019-12-12
ethz.journal.title
Journal of Forecasting
ethz.journal.volume
39
en_US
ethz.journal.issue
3
en_US
ethz.pages.start
470
en_US
ethz.pages.end
488
en_US
ethz.publication.place
Chichester
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::09611 - Corman, Francesco / Corman, Francesco
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
*
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::09611 - Corman, Francesco / Corman, Francesco
en_US
ethz.date.deposited
2021-05-26T13:01:41Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-05-27T06:09:52Z
ethz.rosetta.lastUpdated
2023-02-06T21:51:14Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20predictive%20model%20of%20train%20delays%20on%20a%20railway%20line&rft.jtitle=Journal%20of%20Forecasting&rft.date=2020-04&rft.volume=39&rft.issue=3&rft.spage=470&rft.epage=488&rft.issn=1099-131X&rft.au=Wen,%20Chao&Mou,%20Weiwei&Huang,%20Ping&Li,%20Zhongcan&rft.genre=article&rft_id=info:doi/10.1002/for.2639&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record