Boosting Poisson regression models with telematics car driving data
dc.contributor.author
Gao, Guangyuan
dc.contributor.author
Wang, He
dc.contributor.author
Wüthrich, Mario V.
dc.date.accessioned
2022-03-14T14:19:17Z
dc.date.available
2021-05-27T16:31:44Z
dc.date.available
2021-05-27T16:33:34Z
dc.date.available
2022-02-08T09:34:10Z
dc.date.available
2022-02-08T09:34:50Z
dc.date.available
2022-03-14T14:19:17Z
dc.date.issued
2021
dc.identifier.issn
1573-0565
dc.identifier.issn
0885-6125
dc.identifier.other
10.1007/s10994-021-05957-0
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/487110
dc.identifier.doi
10.3929/ethz-b-000487110
dc.description.abstract
With the emergence of telematics car driving data, insurance companies have started to boost classical actuarial regression models for claim frequency prediction with telematics car driving information. In this paper, we propose two data-driven neural network approaches that process telematics car driving data to complement classical actuarial pricing with a driving behavior risk factor from telematics data. Our neural networks simultaneously accommodate feature engineering and regression modeling which allows us to integrate telematics car driving data in a one-step approach into the claim frequency regression models. We conclude from our numerical analysis that both classical actuarial risk factors and telematics car driving data are necessary to receive the best predictive models. This emphasizes that these two sources of information interact and complement each other.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Densely connected feed-forward neural network
en_US
dc.subject
Convolutional neural network
en_US
dc.subject
Combined actuarial neural network
en_US
dc.subject
Claims frequency modeling
en_US
dc.subject
Telematics car driving data
en_US
dc.subject
Poisson regression
en_US
dc.subject
Generalized linear model
en_US
dc.subject
Regression tree
en_US
dc.subject
Telematics heatmap
en_US
dc.title
Boosting Poisson regression models with telematics car driving data
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-03-21
ethz.journal.title
Machine Learning
ethz.journal.volume
111
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Mach Learn
ethz.pages.start
243
en_US
ethz.pages.end
272
en_US
ethz.size
30 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08813 - Wüthrich, Mario Valentin (Tit.-Prof.)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02204 - RiskLab / RiskLab
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08813 - Wüthrich, Mario Valentin (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02204 - RiskLab / RiskLab
ethz.date.deposited
2021-05-27T16:31:54Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-02-08T09:34:16Z
ethz.rosetta.lastUpdated
2023-02-07T00:22:26Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Boosting%20Poisson%20regression%20models%20with%20telematics%20car%20driving%20data&rft.jtitle=Machine%20Learning&rft.date=2021&rft.volume=111&rft.issue=1&rft.spage=243&rft.epage=272&rft.issn=1573-0565&0885-6125&rft.au=Gao,%20Guangyuan&Wang,%20He&W%C3%BCthrich,%20Mario%20V.&rft.genre=article&rft_id=info:doi/10.1007/s10994-021-05957-0&
Files in this item
Publication type
-
Journal Article [130586]