Show simple item record

dc.contributor.author
D’Souza, Glen G.
dc.contributor.author
Povolo, Vanessa Rahel
dc.contributor.author
Keegstra, Johannes
dc.contributor.author
Stocker, Roman
dc.contributor.author
Ackermann, Martin
dc.date.accessioned
2021-10-15T09:09:35Z
dc.date.available
2021-05-28T15:34:48Z
dc.date.available
2021-05-28T15:37:20Z
dc.date.available
2021-09-28T11:17:45Z
dc.date.available
2021-10-15T09:09:35Z
dc.date.issued
2021-09
dc.identifier.issn
1751-7362
dc.identifier.issn
1751-7370
dc.identifier.other
10.1038/s41396-021-00953-7
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/487397
dc.identifier.doi
10.3929/ethz-b-000487397
dc.description.abstract
Microbial populations often experience fluctuations in nutrient complexity in their natural environment such as between high molecular weight polysaccharides and simple monosaccharides. However, it is unclear if cells can adopt growth behaviors that allow individuals to optimally respond to differences in nutrient complexity. Here, we directly control nutrient complexity and use quantitative single-cell analysis to study the growth dynamics of individuals within populations of the aquatic bacterium Caulobacter crescentus. We show that cells form clonal microcolonies when growing on the polysaccharide xylan, which is abundant in nature and degraded using extracellular cell-linked enzymes; and disperse to solitary growth modes when the corresponding monosaccharide xylose becomes available or nutrients are exhausted. We find that the cellular density required to achieve maximal growth rates is four-fold higher on xylan than on xylose, indicating that aggregating is advantageous on polysaccharides. When collectives on xylan are transitioned to xylose, cells start dispersing, indicating that colony formation is no longer beneficial and solitary behaviors might serve to reduce intercellular competition. Our study demonstrates that cells can dynamically tune their behaviors when nutrient complexity fluctuates, elucidates the quantitative advantages of distinct growth behaviors for individual cells and indicates why collective growth modes are prevalent in microbial populations.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Biofilms
en_US
dc.subject
Microbial ecology
en_US
dc.subject
Water microbiology
en_US
dc.title
Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-03-17
ethz.journal.title
The ISME Journal
ethz.journal.volume
15
en_US
ethz.journal.issue
9
en_US
ethz.journal.abbreviated
ISME J
ethz.pages.start
2614
en_US
ethz.pages.end
2626
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
A microscale analysis of the causes and consequences of the spatial arrangement of biological functions in microbial consortia
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02608 - Institut für Umweltingenieurwiss. / Institute of Environmental Engineering::09467 - Stocker, Roman / Stocker, Roman
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02721 - Inst. f. Biogeochemie u. Schadstoffdyn. / Inst. Biogeochem. and Pollutant Dynamics::03743 - Ackermann, Martin / Ackermann, Martin
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02205 - FIRST-Lab / FIRST Center for Micro- and Nanoscience
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02608 - Institut für Umweltingenieurwiss. / Institute of Environmental Engineering::09467 - Stocker, Roman / Stocker, Roman
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02721 - Inst. f. Biogeochemie u. Schadstoffdyn. / Inst. Biogeochem. and Pollutant Dynamics::03743 - Ackermann, Martin / Ackermann, Martin
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02205 - FIRST-Lab / FIRST Center for Micro- and Nanoscience
ethz.grant.agreementno
169978
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projektförderung in Biologie und Medizin (Abteilung III)
ethz.date.deposited
2021-05-28T15:34:55Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-09-28T11:17:52Z
ethz.rosetta.lastUpdated
2024-02-02T15:07:43Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Nutrient%20complexity%20triggers%20transitions%20between%20solitary%20and%20colonial%20growth%20in%20bacterial%20populations&rft.jtitle=The%20ISME%20Journal&rft.date=2021-09&rft.volume=15&rft.issue=9&rft.spage=2614&rft.epage=2626&rft.issn=1751-7362&1751-7370&rft.au=D%E2%80%99Souza,%20Glen%20G.&Povolo,%20Vanessa%20Rahel&Keegstra,%20Johannes&Stocker,%20Roman&Ackermann,%20Martin&rft.genre=article&rft_id=info:doi/10.1038/s41396-021-00953-7&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record