Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage
dc.contributor.author
Luo, Yong
dc.contributor.author
Xie, Yuhui
dc.contributor.author
Jiang, Hao
dc.contributor.author
Chen, Ying
dc.contributor.author
Zhang, Li
dc.contributor.author
Sheng, Xinxin
dc.contributor.author
Xie, Delong
dc.contributor.author
Wu, Hua
dc.contributor.author
Mei, Yi
dc.date.accessioned
2021-06-07T10:13:10Z
dc.date.available
2021-06-07T02:32:35Z
dc.date.available
2021-06-07T10:13:10Z
dc.date.issued
2021-09-15
dc.identifier.issn
0300-9467
dc.identifier.issn
1385-8947
dc.identifier.issn
1873-3212
dc.identifier.issn
0923-0467
dc.identifier.other
10.1016/j.cej.2021.130466
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/488454
dc.description.abstract
Phase change materials (PCMs) are promising candidates for enhancing the efficiency of solar thermal energy utilization owing to their excellent capacity of storing thermal energy. However, the issues of leakage, poor thermal conductivity, and high flammability have hindered their application. Here, we have successfully designed and prepared flame-retardant PCMs through chemical modification of stearyl alcohol (SAL) with a phosphorus-containing molecule. Form-stable phase change composites were then fabricated through a vacuum impregnation method, where an MXene with a porous architecture serves as the supporting skeleton for PCMs. As expected, benefiting from the high aspect ratio and strong capillary force of the MXene aerogel as well as the interfacial interaction between the PCM molecule and MXene, the resulting MXene-based PCMs (PSM-4) exhibit a large thermal conductivity (0.486 W m K ) and are form-stable upon heating up to 90°C. Additionally, the combination of phosphorus and MXene further strengthens the flame retardancy of PCMs, e.g., the peak heat release rate and total heat release are reduced by 42.8% and 32.1%, respectively. The improvement of flame retardancy can be assigned to the catalytic charring and barrier effect in the condensed phase as well as to the effect of free radical quenching in the gas phase. Hence, the obtained MXene-based flame-retardant PCMs can be potentially utilized for safe and efficient applications of solar energy storage. −1 −1
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Thermal energy storage
en_US
dc.subject
Phase change materials
en_US
dc.subject
MXene
en_US
dc.subject
Flame retardant
en_US
dc.title
Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage
en_US
dc.type
Journal Article
dc.date.published
2021-05-25
ethz.journal.title
Chemical Engineering Journal
ethz.journal.volume
420
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Chem. Eng. J.
ethz.pages.start
130466
en_US
ethz.size
11 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2021-06-07T02:32:43Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-06-07T10:13:17Z
ethz.rosetta.lastUpdated
2022-03-29T08:27:59Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Flame-retardant%20and%20form-stable%20phase%20change%20composites%20based%20on%20MXene%20with%20high%20thermostability%20and%20thermal%20conductivity%20for%20thermal%20e&rft.jtitle=Chemical%20Engineering%20Journal&rft.date=2021-09-15&rft.volume=420&rft.issue=3&rft.spage=130466&rft.issn=0300-9467&1385-8947&1873-3212&0923-0467&rft.au=Luo,%20Yong&Xie,%20Yuhui&Jiang,%20Hao&Chen,%20Ying&Zhang,%20Li&rft.genre=article&rft_id=info:doi/10.1016/j.cej.2021.130466&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [134903]