Mathematical models for bio-inspired imaging and plasmonics
dc.contributor.author
Baldassari, Lorenzo
dc.contributor.supervisor
Ammari, Habib
dc.contributor.supervisor
Francini, Elisa
dc.date.accessioned
2021-06-14T11:49:40Z
dc.date.available
2021-06-14T09:58:24Z
dc.date.available
2021-06-14T11:49:40Z
dc.date.issued
2021
dc.identifier.uri
http://hdl.handle.net/20.500.11850/489409
dc.identifier.doi
10.3929/ethz-b-000489409
dc.description.abstract
This thesis consists of two main parts.
The first part is devoted to the study of the echo- and electro-sensing inverse problem. It provides mathematical and computational frameworks to explain how bats and weakly electric fish might identify and classify multiple targets.
For the echo-sensing problem, we model the physical situation of a bat identifying and classifying a target. We focus on the frequency- and time-dependent setting. In the frequency domain, we provide and numerically test in the presence of noise a dictionary matching procedure for target classification based on comparing frequency-dependent distribution descriptors with precomputed ones in a dictionary of learned distributions. In the time domain, we introduce the concept of time-dependent polarization tensors for the wave equations associated to targets with constitutive parameters different from those of the background and size smaller than the operating wavelength. We show that these tensors are promising for performing imaging.
For the electro-sensing problem, we draw inspiration from the biological behavior of the weakly electric fish, which is able to retrieve much more information about the shape and material of the targets when approaching them. We provide a new classification method which takes advantage of the multi-scale configuration. The method is based on a family of transform-invariant shape descriptors reconstructed at multiple scales. The evidence provided by the different descriptors at each scale is fused using the Dempster-Shafer Theory.
The second part of the thesis is devoted to the study of modal expansions for non-Hermitian systems. We focus in particular on the analysis of the electromagnetic field scattered by a plasmonic nanoparticle with dispersive material parameters in a resonant regime. We provide a modal approximation of the low-frequency part of the scattered field in the time domain as a finite sum of modes oscillating at complex resonant frequencies.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
electrosensing
en_US
dc.subject
echosensing
en_US
dc.subject
plasmonic nanoparticles
en_US
dc.subject
weakly electric fish
en_US
dc.subject
plasmonic resonance
en_US
dc.subject
bioinspired imaging
en_US
dc.title
Mathematical models for bio-inspired imaging and plasmonics
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-06-14
ethz.size
158 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.grant
Mathematics for bio-inspired imaging
en_US
ethz.identifier.diss
27596
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09504 - Ammari, Habib / Ammari, Habib
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09504 - Ammari, Habib / Ammari, Habib
en_US
ethz.grant.agreementno
172483
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-06-14T09:58:30Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-06-14T11:49:47Z
ethz.rosetta.lastUpdated
2022-03-29T08:45:22Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mathematical%20models%20for%20bio-inspired%20imaging%20and%20plasmonics&rft.date=2021&rft.au=Baldassari,%20Lorenzo&rft.genre=unknown&rft.btitle=Mathematical%20models%20for%20bio-inspired%20imaging%20and%20plasmonics
Dateien zu diesem Eintrag
Publikationstyp
-
Doctoral Thesis [30094]