Show simple item record

dc.contributor.author
Born, Jannis
dc.contributor.author
Beymer, David
dc.contributor.author
Rajan, Deepta
dc.contributor.author
Coy, Adam
dc.contributor.author
Mukherjee, Vandana V.
dc.contributor.author
Manica, Matteo
dc.contributor.author
Prasanna, Prasanth
dc.contributor.author
Ballah, Deddeh
dc.contributor.author
Guindy, Michal
dc.contributor.author
Shaham, Dorith
dc.contributor.author
Shah, Pallav L.
dc.contributor.author
Karteris, Emmanouil
dc.contributor.author
Robertus, Jan L.
dc.contributor.author
Gabrani, Maria
dc.contributor.author
Rosen-Zvi, Michal
dc.date.accessioned
2021-06-23T07:05:36Z
dc.date.available
2021-06-19T03:03:48Z
dc.date.available
2021-06-23T07:05:36Z
dc.date.issued
2021-06-11
dc.identifier.other
10.1016/j.patter.2021.100269
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/490430
dc.identifier.doi
10.3929/ethz-b-000490430
dc.description.abstract
Although a plethora of research articles on AI methods on COVID-19 medical imaging are published, their clinical value remains unclear. We conducted the largest systematic review of the literature addressing the utility of AI in imaging for COVID-19 patient care. By keyword searches on PubMed and preprint servers throughout 2020, we identified 463 manuscripts and performed a systematic meta-analysis to assess their technical merit and clinical relevance. Our analysis evidences a significant disparity between clinical and AI communities, in the focus on both imaging modalities (AI experts neglected CT and ultrasound, favoring X-ray) and performed tasks (71.9% of AI papers centered on diagnosis). The vast majority of manuscripts were found to be deficient regarding potential use in clinical practice, but 2.7% (n = 12) publications were assigned a high maturity level and are summarized in greater detail. We provide an itemized discussion of the challenges in developing clinically relevant AI solutions with recommendations and remedies.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
artificial intelligence
en_US
dc.subject
meta-review
en_US
dc.subject
COVID-19
en_US
dc.subject
Coronavirus
en_US
dc.subject
Chest X-Ray
en_US
dc.subject
Chest CT
en_US
dc.subject
chest ultrasound
en_US
dc.subject
machine learning
en_US
dc.subject
deep learning
en_US
dc.subject
PRISMA
en_US
dc.subject
SARS-CoV-2
en_US
dc.subject
medical imaging
en_US
dc.subject
digital healthcare
en_US
dc.subject
lung imaging
en_US
dc.title
On the role of artificial intelligence in medical imaging of COVID-19
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-04-30
ethz.journal.title
Patterns
ethz.journal.volume
2
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
100269
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2021-06-19T03:03:49Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-06-23T07:05:42Z
ethz.rosetta.lastUpdated
2025-02-13T23:39:10Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20the%20role%20of%20artificial%20intelligence%20in%20medical%20imaging%20of%20COVID-19&rft.jtitle=Patterns&rft.date=2021-06-11&rft.volume=2&rft.issue=6&rft.spage=100269&rft.au=Born,%20Jannis&Beymer,%20David&Rajan,%20Deepta&Coy,%20Adam&Mukherjee,%20Vandana%20V.&rft.genre=article&rft_id=info:doi/10.1016/j.patter.2021.100269&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record