Adaptive algorithms with a-posteriori Quasi-Monte Carlo estimation for parametric elliptic PDEs
dc.contributor.author
Longo, Marcello
dc.date.accessioned
2021-06-24T09:34:10Z
dc.date.available
2021-06-24T08:10:26Z
dc.date.available
2021-06-24T09:34:10Z
dc.date.issued
2021-01
dc.identifier.uri
http://hdl.handle.net/20.500.11850/491117
dc.description.abstract
We introduce novel adaptive methods to approximate Partial Differential Equations (PDEs) with uncertain parametric inputs. A typical problem in Uncertainty Quantification is the approximation of the expected values of Quantities of Interest of the solution, which requires the efficient numerical approximation of high-dimensional integrals. We perform this task by a class of deterministic Quasi-Monte Carlo integration rules derived from Polynomial lattices, that allows to control a-posteriori the integration error without querying the governing PDE and does not incur in the curse of dimensionality. Based on an abstract formulation of Adaptive Finite Element methods for deterministic problems, we infer convergence of the combined adaptive algorithms in the parameter and physical space. We propose a selection of examples of PDEs admissible for these algorithms. Finally, we present numerical evidence of convergence.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
Uncertainty quantification
en_US
dc.subject
Adaptive finite element methods
en_US
dc.subject
High-dimensional Integration
en_US
dc.subject
Quasi-Monte Carlo
en_US
dc.title
Adaptive algorithms with a-posteriori Quasi-Monte Carlo estimation for parametric elliptic PDEs
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2021-03
en_US
ethz.size
22 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=945
ethz.date.deposited
2021-06-24T08:10:31Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=945
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-06-24T09:34:19Z
ethz.rosetta.lastUpdated
2021-06-24T09:34:19Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Adaptive%20algorithms%20with%20a-posteriori%20Quasi-Monte%20Carlo%20estimation%20for%20parametric%20elliptic%20PDEs&rft.jtitle=SAM%20Research%20Report&rft.date=2021-01&rft.volume=2021-03&rft.au=Longo,%20Marcello&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6866]