Modal approximation for plasmonic resonators in the time domain: the scalar case
dc.contributor.author
Baldassari, Lorenzo
dc.contributor.author
Millien, Pierre
dc.contributor.author
Vanel, Alice L.
dc.date.accessioned
2021-06-24T09:24:56Z
dc.date.available
2021-06-24T08:15:40Z
dc.date.available
2021-06-24T09:24:56Z
dc.date.issued
2021-02
dc.identifier.uri
http://hdl.handle.net/20.500.11850/491121
dc.description.abstract
We study the electromagnetic field scattered by a metallic nanoparticle with dispersive material parameters in a resonant regime. We consider the particle placed in a homogeneous medium in a low-frequency regime. We define modes for the non-Hermitian problem as perturbations of electrostatic modes, and obtain a modal approximation of the scattered field in the frequency domain. The poles of the expansion correspond to the eigenvalues of a singular boundary integral operator and are shown to lie in a bounded region near the origin of the lower-half complex plane. Finally, we show that this modal representation gives a very good approximation of the field in the time domain. We present numerical simulations in two dimensions to corroborate our results.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
Plasmonic resonance
en_US
dc.subject
Time-domain modal expansion
en_US
dc.subject
Subwavelength resonators
en_US
dc.subject
Quasi-normal modes
en_US
dc.title
Modal approximation for plasmonic resonators in the time domain: the scalar case
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2021-05
en_US
ethz.size
39 p.
en_US
ethz.grant
Mathematics for bio-inspired imaging
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09504 - Ammari, Habib / Ammari, Habib
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09504 - Ammari, Habib / Ammari, Habib
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=947
ethz.grant.agreementno
172483
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-06-24T08:15:46Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=947
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-06-24T09:25:05Z
ethz.rosetta.lastUpdated
2022-03-29T10:04:22Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Modal%20approximation%20for%20plasmonic%20resonators%20in%20the%20time%20domain:%20the%20scalar%20case&rft.jtitle=SAM%20Research%20Report&rft.date=2021-02&rft.volume=2021-05&rft.au=Baldassari,%20Lorenzo&Millien,%20Pierre&Vanel,%20Alice%20L.&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6916]