pyPOCQuant — A tool to automatically quantify Point-Of-Care Tests from images
dc.contributor.author
Cuny, Andreas P.
dc.contributor.author
Rudolf, Fabian
dc.contributor.author
Ponti, Aaron
dc.date.accessioned
2021-06-30T07:03:51Z
dc.date.available
2021-06-25T03:08:47Z
dc.date.available
2021-06-25T12:30:14Z
dc.date.available
2021-06-30T07:03:51Z
dc.date.issued
2021-07
dc.identifier.issn
2352-7110
dc.identifier.other
10.1016/j.softx.2021.100710
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/491291
dc.identifier.doi
10.3929/ethz-b-000491291
dc.description.abstract
Lateral flow Point-Of-Care Tests (POCTs) are a valuable tool for rapidly detecting pathogens and the associated immune response in humans and animals. In the context of the SARS-CoV-2 pandemic, they offer rapid on-site diagnostics and can relieve centralized laboratory testing sites, thus freeing resources that can be focused on especially vulnerable groups. However, visual interpretation of the POCT test lines is subjective, error prone and only qualitative. Here we present pyPOCQuant, an open-source tool implemented in Python 3 that can robustly and reproducibly analyze POCTs from digital images and return an unbiased and quantitative measurement of the POCT test lines.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Lateral flow assay (LFA)
en_US
dc.subject
Lateral flow immunoassay (LFIA)
en_US
dc.subject
Point of care test (POCT)
en_US
dc.subject
Test line quantification
en_US
dc.subject
Readout zone quantification
en_US
dc.subject
Diagnostics
en_US
dc.subject
Computer vision
en_US
dc.subject
QR code
en_US
dc.subject
Rapid testing
en_US
dc.subject
Rapid diagnostic tests (RTD)
en_US
dc.title
pyPOCQuant — A tool to automatically quantify Point-Of-Care Tests from images
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-06-09
ethz.journal.title
SoftwareX
ethz.journal.volume
15
en_US
ethz.pages.start
100710
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03699 - Stelling, Jörg / Stelling, Jörg
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03699 - Stelling, Jörg / Stelling, Jörg
ethz.date.deposited
2021-06-25T03:08:54Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-06-25T12:30:21Z
ethz.rosetta.lastUpdated
2022-03-29T10:08:54Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=pyPOCQuant%20%E2%80%94%20A%20tool%20to%20automatically%20quantify%20Point-Of-Care%20Tests%20from%20images&rft.jtitle=SoftwareX&rft.date=2021-07&rft.volume=15&rft.spage=100710&rft.issn=2352-7110&rft.au=Cuny,%20Andreas%20P.&Rudolf,%20Fabian&Ponti,%20Aaron&rft.genre=article&rft_id=info:doi/10.1016/j.softx.2021.100710&
Files in this item
Publication type
-
Journal Article [133214]