Show simple item record

dc.contributor.author
Nguyen, Lu T.K.
dc.contributor.author
Smyth, Noel F.
dc.date.accessioned
2021-08-13T12:00:41Z
dc.date.available
2021-07-03T00:57:12Z
dc.date.available
2021-08-13T12:00:41Z
dc.date.issued
2021-07
dc.identifier.issn
0022-2526
dc.identifier.issn
1467-9590
dc.identifier.other
10.1111/sapm.12381
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/492861
dc.description.abstract
In this work, the dispersive shock wave (DSW) solution of a Boussinesq Benjamin–Ono (BBO) equation, the standard Boussinesq equation with dispersion replaced by nonlocal Benjamin–Ono dispersion, is derived. This DSW solution is derived using two methods, DSW fitting and from a simple wave solution of the Whitham modulation equations for the BBO equation. The first of these yields the two edges of the DSW, while the second yields the complete DSW solution. As the Whitham modulation equations could not be set in Riemann invariant form, the ordinary differential equations governing the simple wave are solved using a hybrid numerical method coupled to the dispersive shock fitting which provides a suitable boundary condition. The full DSW solution is then determined, which is found to be in excellent agreement with numerical solutions of the BBO equation. This hybrid method is a suitable and relatively simple method to fully determine the DSW solution of a nonlinear dispersive wave equation for which the (hyperbolic) Whitham modulation equations are known, but their Riemann invariant form is not.
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley Periodicals LLC
en_US
dc.title
Dispersive shock waves for the Boussinesq Benjamin–Ono equation
en_US
dc.type
Journal Article
dc.date.published
2021-04-15
ethz.journal.title
Studies in Applied Mathematics
ethz.journal.volume
147
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Stud. appl. math. (Cambr.)
ethz.pages.start
32
en_US
ethz.pages.end
59
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
s.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::09600 - Kochmann, Dennis / Kochmann, Dennis
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::09600 - Kochmann, Dennis / Kochmann, Dennis
en_US
ethz.date.deposited
2021-07-03T00:57:20Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-13T12:00:47Z
ethz.rosetta.lastUpdated
2022-03-29T11:12:49Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Dispersive%20shock%20waves%20for%20the%20Boussinesq%20Benjamin%E2%80%93Ono%20equation&rft.jtitle=Studies%20in%20Applied%20Mathematics&rft.date=2021-07&rft.volume=147&rft.issue=1&rft.spage=32&rft.epage=59&rft.issn=0022-2526&1467-9590&rft.au=Nguyen,%20Lu%20T.K.&Smyth,%20Noel%20F.&rft.genre=article&rft_id=info:doi/10.1111/sapm.12381&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record