Broadband, highly reflective thermal protection systems, exploiting photonic additives
dc.contributor.author
Christidis, George
dc.contributor.author
Koch, Ueli
dc.contributor.author
Gusarov, Andrey V.
dc.contributor.author
Shklover, Valery
dc.contributor.author
Leuthold, Juerg
dc.date.accessioned
2021-11-02T10:13:26Z
dc.date.available
2021-07-08T13:07:08Z
dc.date.available
2021-07-08T13:18:14Z
dc.date.available
2021-07-08T13:48:03Z
dc.date.available
2021-07-08T14:07:02Z
dc.date.available
2021-11-02T10:13:26Z
dc.date.issued
2021-12
dc.identifier.issn
1290-0729
dc.identifier.issn
1778-4166
dc.identifier.other
10.1016/j.ijthermalsci.2021.107146
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/493596
dc.identifier.doi
10.3929/ethz-b-000493596
dc.description.abstract
Photonic additives have been investigated as a means to enhance the efficiency of thermal protection systems (TPS) against the adverse effects of thermal radiation. State-of-the-art TPS consist of carbon fibers embedded in a phenolic resin matrix. During operation, the TPS is consumed because it is exposed to an excess heat flux, a large fraction of which is due to thermal radiation. Here, we show that a properly modeled and designed additive-impregnated TPS can block a considerable part of this heat influx and quantify how different control parameters, in particular the additives’ amount, placement and alignment, influence the achieved photonic enhancement. More specifically, the intrinsic reflectivity of 8.5% of a conventional TPS can been improved to values exceeding 85% by controllably inserting additives, consisting of a Ta/[SiO2/TiO2]6 heterostructure, here referred to as Type 1, an ideal, optimized, high and broadband reflector. Nevertheless, even simple, commercially available additives composed of TiO2/Al2O3/TiO2, here referred to as Type 2, provide a high reflectivity enhancement with values of up to 76%, when used in larger quantities. The simulations of this work are based on the Monte Carlo Ray Tracing (MCRT) method. The MCRT simulation method has been validated against experiment, using the structure and experiments from a literature reference. Our analysis method allows one to design and model the performance of photonically enhanced TPS that operate in high-flux, radiative conditions, like those expected in future aerospace re-entry missions or next-generation, gas turbines and thermophotovoltaic plants and provides a viable option for efficiently enhancing a TPS.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Photonic Additives
en_US
dc.subject
Reflectance Enhancement
en_US
dc.subject
Thermal radiation
en_US
dc.subject
Radiative Transfer
en_US
dc.subject
Numerical modelling
en_US
dc.subject
Monte Carlo
en_US
dc.title
Broadband, highly reflective thermal protection systems, exploiting photonic additives
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2021-06-30
ethz.journal.title
International Journal of Thermal Sciences
ethz.journal.volume
170
en_US
ethz.journal.abbreviated
Int. j. therm. sci.
ethz.pages.start
107146
en_US
ethz.size
11 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.code.ddc
DDC - DDC::5 - Science::530 - Physics
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::600 - Technology (applied sciences)
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::621.3 - Electric engineering
en_US
ethz.grant
Design and manufacturing of heterogeneous photonic composites for aerospace applications
en_US
ethz.identifier.wos
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02635 - Institut für Elektromagnetische Felder / Electromagnetic Fields Laboratory::03974 - Leuthold, Juerg / Leuthold, Juerg
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02635 - Institut für Elektromagnetische Felder / Electromagnetic Fields Laboratory
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02635 - Institut für Elektromagnetische Felder / Electromagnetic Fields Laboratory::03974 - Leuthold, Juerg / Leuthold, Juerg
en_US
ethz.grant.agreementno
160184
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-07-08T13:07:15Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-07-08T13:18:21Z
ethz.rosetta.lastUpdated
2022-03-29T15:06:51Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Broadband,%20highly%20reflective%20thermal%20protection%20systems,%20exploiting%20photonic%20additives&rft.jtitle=International%20Journal%20of%20Thermal%20Sciences&rft.date=2021-12&rft.volume=170&rft.spage=107146&rft.issn=1290-0729&1778-4166&rft.au=Christidis,%20George&Koch,%20Ueli&Gusarov,%20Andrey%20V.&Shklover,%20Valery&Leuthold,%20Juerg&rft.genre=article&rft_id=info:doi/10.1016/j.ijthermalsci.2021.107146&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [130529]