Show simple item record

dc.contributor.author
Tuia, Devis
dc.contributor.author
Roscher, Ribana
dc.contributor.author
Wegner, Jan D.
dc.contributor.author
Jacobs, Nathan
dc.contributor.author
Zhu, Xiaoxiang
dc.contributor.author
Camps-Valls, Gustau
dc.date.accessioned
2021-09-03T06:53:51Z
dc.date.available
2021-07-15T02:29:29Z
dc.date.available
2021-09-03T06:53:51Z
dc.date.issued
2021-06
dc.identifier.issn
2168-6831
dc.identifier.other
10.1109/MGRS.2020.3043504
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/494648
dc.description.abstract
In past years, we have witnessed the fields of geosciences and remote sensing and artificial intelligence (AI) become closer. Thanks to the massive availability of observational data, improved simulations, and algorithmic advances, these disciplines have found common objectives and challenges to help advance the modeling and understanding of the Earth system. Despite such great opportunities, we have also observed a worrisome tendency to remain in disciplinary comfort zones, applying recent advances from AI on well-resolved remote sensing problems. Here, we take a position on the research directions for which we think the interface between these fields will have the most significant impact and become potential game changers. In our declared agenda for AI in Earth sciences, we aim to inspire researchers, especially the younger generations, to tackle these challenges for a real advance of remote sensing and the geosciences.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Toward a Collective Agenda on AI for Earth Science Data Analysis
en_US
dc.type
Journal Article
dc.date.published
2021-06-16
ethz.journal.title
IEEE Geoscience and Remote Sensing Magazine
ethz.journal.volume
9
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
IEEE geosci. remote sens. mag.
ethz.pages.start
88
en_US
ethz.pages.end
104
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-07-15T02:30:04Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-03T06:54:00Z
ethz.rosetta.lastUpdated
2021-09-03T06:54:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Toward%20a%20Collective%20Agenda%20on%20AI%20for%20Earth%20Science%20Data%20Analysis&rft.jtitle=IEEE%20Geoscience%20and%20Remote%20Sensing%20Magazine&rft.date=2021-06&rft.volume=9&rft.issue=2&rft.spage=88&rft.epage=104&rft.issn=2168-6831&rft.au=Tuia,%20Devis&Roscher,%20Ribana&Wegner,%20Jan%20D.&Jacobs,%20Nathan&Zhu,%20Xiaoxiang&rft.genre=article&rft_id=info:doi/10.1109/MGRS.2020.3043504&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record