Show simple item record

dc.contributor.author
Alon, Noga
dc.contributor.author
Bucić, Matija
dc.contributor.author
Sudakov, Benny
dc.date.accessioned
2021-08-18T08:28:20Z
dc.date.available
2021-07-15T10:16:40Z
dc.date.available
2021-08-18T08:28:20Z
dc.date.issued
2021-08
dc.identifier.issn
0002-9939
dc.identifier.issn
1088-6826
dc.identifier.other
10.1090/proc/15323
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/494737
dc.description.abstract
We study the following question raised by Erdos and Hajnal in the early 90's. Over all n-vertex graphs G what is the smallest possible value of m for which any m vertices of G contain both a clique and an independent set of size log n? We construct examples showing that m is at most 2(2(log log n)1/2+o(1)) obtaining a twofold sub-polynomial improvement over the upper bound of about root n coming from the natural guess, the random graph. Our (probabilistic) construction gives rise to new examples of Ramsey graphs, which while having no very large homogenous subsets contain both cliques and independent sets of size log n in any small subset of vertices. This is very far from being true in random graphs. Our proofs are based on an interplay between taking lexicographic products and using randomness.
en_US
dc.language.iso
en
en_US
dc.publisher
American Mathematical Society
en_US
dc.title
Large cliques and independent sets all over the place
en_US
dc.type
Journal Article
dc.date.published
2021-05-14
ethz.journal.title
Proceedings of the American Mathematical Society
ethz.journal.volume
149
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
Proc. Am. Math. Soc.
ethz.pages.start
3145
en_US
ethz.pages.end
3157
en_US
ethz.grant
Problems in Extremal and Probabilistic Combinatorics
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Providence
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02502 - Institut für Operations Research / Institute for Operations Research::03993 - Sudakov, Benjamin / Sudakov, Benjamin
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02502 - Institut für Operations Research / Institute for Operations Research::03993 - Sudakov, Benjamin / Sudakov, Benjamin
ethz.grant.agreementno
196965
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-07-15T10:18:15Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-08-18T08:28:27Z
ethz.rosetta.lastUpdated
2022-03-29T11:15:17Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Large%20cliques%20and%20independent%20sets%20all%20over%20the%20place&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.date=2021-08&rft.volume=149&rft.issue=8&rft.spage=3145&rft.epage=3157&rft.issn=0002-9939&1088-6826&rft.au=Alon,%20Noga&Buci%C4%87,%20Matija&Sudakov,%20Benny&rft.genre=article&rft_id=info:doi/10.1090/proc/15323&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record